123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376 |
- import uuid
- import time
- import asyncio
- import json
- from pathlib import Path
- from transformers import AutoTokenizer
- from typing import List, Literal, Union, Dict
- from aiohttp import web
- import aiohttp_cors
- import traceback
- import os
- import sys
- from exo import DEBUG, VERSION
- from exo.download.download_progress import RepoProgressEvent
- from exo.helpers import PrefixDict, shutdown
- from exo.inference.tokenizers import resolve_tokenizer
- from exo.orchestration import Node
- from exo.models import build_base_shard, model_cards, get_repo, pretty_name, get_supported_models
- from typing import Callable, Optional
- class Message:
- def __init__(self, role: str, content: Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]):
- self.role = role
- self.content = content
- def to_dict(self):
- return {"role": self.role, "content": self.content}
- class ChatCompletionRequest:
- def __init__(self, model: str, messages: List[Message], temperature: float):
- self.model = model
- self.messages = messages
- self.temperature = temperature
- def to_dict(self):
- return {"model": self.model, "messages": [message.to_dict() for message in self.messages], "temperature": self.temperature}
- def generate_completion(
- chat_request: ChatCompletionRequest,
- tokenizer,
- prompt: str,
- request_id: str,
- tokens: List[int],
- stream: bool,
- finish_reason: Union[Literal["length", "stop"], None],
- object_type: Literal["chat.completion", "text_completion"],
- ) -> dict:
- completion = {
- "id": f"chatcmpl-{request_id}",
- "object": object_type,
- "created": int(time.time()),
- "model": chat_request.model,
- "system_fingerprint": f"exo_{VERSION}",
- "choices": [{
- "index": 0,
- "message": {"role": "assistant", "content": tokenizer.decode(tokens)},
- "logprobs": None,
- "finish_reason": finish_reason,
- }],
- }
- if not stream:
- completion["usage"] = {
- "prompt_tokens": len(tokenizer.encode(prompt)),
- "completion_tokens": len(tokens),
- "total_tokens": len(tokenizer.encode(prompt)) + len(tokens),
- }
- choice = completion["choices"][0]
- if object_type.startswith("chat.completion"):
- key_name = "delta" if stream else "message"
- choice[key_name] = {"role": "assistant", "content": tokenizer.decode(tokens)}
- elif object_type == "text_completion":
- choice["text"] = tokenizer.decode(tokens)
- else:
- ValueError(f"Unsupported response type: {object_type}")
- return completion
- def remap_messages(messages: List[Message]) -> List[Message]:
- remapped_messages = []
- last_image = None
- for message in messages:
- if not isinstance(message.content, list):
- remapped_messages.append(message)
- continue
- remapped_content = []
- for content in message.content:
- if isinstance(content, dict):
- if content.get("type") in ["image_url", "image"]:
- image_url = content.get("image_url", {}).get("url") or content.get("image")
- if image_url:
- last_image = {"type": "image", "image": image_url}
- remapped_content.append({"type": "text", "text": "[An image was uploaded but is not displayed here]"})
- else:
- remapped_content.append(content)
- else:
- remapped_content.append(content)
- remapped_messages.append(Message(role=message.role, content=remapped_content))
- if last_image:
- # Replace the last image placeholder with the actual image content
- for message in reversed(remapped_messages):
- for i, content in enumerate(message.content):
- if isinstance(content, dict):
- if content.get("type") == "text" and content.get("text") == "[An image was uploaded but is not displayed here]":
- message.content[i] = last_image
- return remapped_messages
- return remapped_messages
- def build_prompt(tokenizer, _messages: List[Message]):
- messages = remap_messages(_messages)
- prompt = tokenizer.apply_chat_template([m.to_dict() for m in messages], tokenize=False, add_generation_prompt=True)
- for message in messages:
- if not isinstance(message.content, list):
- continue
- return prompt
- def parse_message(data: dict):
- if "role" not in data or "content" not in data:
- raise ValueError(f"Invalid message: {data}. Must have 'role' and 'content'")
- return Message(data["role"], data["content"])
- def parse_chat_request(data: dict, default_model: str):
- return ChatCompletionRequest(
- data.get("model", default_model),
- [parse_message(msg) for msg in data["messages"]],
- data.get("temperature", 0.0),
- )
- class PromptSession:
- def __init__(self, request_id: str, timestamp: int, prompt: str):
- self.request_id = request_id
- self.timestamp = timestamp
- self.prompt = prompt
- class ChatGPTAPI:
- def __init__(self, node: Node, inference_engine_classname: str, response_timeout: int = 90, on_chat_completion_request: Callable[[str, ChatCompletionRequest, str], None] = None, default_model: Optional[str] = None):
- self.node = node
- self.inference_engine_classname = inference_engine_classname
- self.response_timeout = response_timeout
- self.on_chat_completion_request = on_chat_completion_request
- self.app = web.Application(client_max_size=100*1024*1024) # 100MB to support image upload
- self.prompts: PrefixDict[str, PromptSession] = PrefixDict()
- self.prev_token_lens: Dict[str, int] = {}
- self.stream_tasks: Dict[str, asyncio.Task] = {}
- self.default_model = default_model or "llama-3.2-1b"
- cors = aiohttp_cors.setup(self.app)
- cors_options = aiohttp_cors.ResourceOptions(
- allow_credentials=True,
- expose_headers="*",
- allow_headers="*",
- allow_methods="*",
- )
- cors.add(self.app.router.add_get("/models", self.handle_get_models), {"*": cors_options})
- cors.add(self.app.router.add_get("/v1/models", self.handle_get_models), {"*": cors_options})
- cors.add(self.app.router.add_post("/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
- cors.add(self.app.router.add_post("/v1/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
- cors.add(self.app.router.add_post("/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
- cors.add(self.app.router.add_post("/v1/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
- cors.add(self.app.router.add_get("/v1/download/progress", self.handle_get_download_progress), {"*": cors_options})
- cors.add(self.app.router.add_get("/modelpool", self.handle_model_support), {"*": cors_options})
- cors.add(self.app.router.add_get("/healthcheck", self.handle_healthcheck), {"*": cors_options})
- cors.add(self.app.router.add_post("/quit", self.handle_quit), {"*": cors_options})
- if "__compiled__" not in globals():
- self.static_dir = Path(__file__).parent.parent/"tinychat"
- self.app.router.add_get("/", self.handle_root)
- self.app.router.add_static("/", self.static_dir, name="static")
- self.app.middlewares.append(self.timeout_middleware)
- self.app.middlewares.append(self.log_request)
-
- async def handle_quit(self, request):
- if DEBUG>=1: print("Received quit signal")
- response = web.json_response({"detail": "Quit signal received"}, status=200)
- await response.prepare(request)
- await response.write_eof()
- await shutdown(signal.SIGINT, asyncio.get_event_loop())
- async def timeout_middleware(self, app, handler):
- async def middleware(request):
- try:
- return await asyncio.wait_for(handler(request), timeout=self.response_timeout)
- except asyncio.TimeoutError:
- return web.json_response({"detail": "Request timed out"}, status=408)
- return middleware
- async def log_request(self, app, handler):
- async def middleware(request):
- if DEBUG >= 2: print(f"Received request: {request.method} {request.path}")
- return await handler(request)
- return middleware
- async def handle_root(self, request):
- return web.FileResponse(self.static_dir/"index.html")
- async def handle_healthcheck(self, request):
- return web.json_response({"status": "ok"})
- async def handle_model_support(self, request):
- return web.json_response({
- "model pool": {
- model_name: pretty_name.get(model_name, model_name)
- for model_name in get_supported_models(self.node.topology_inference_engines_pool)
- }
- })
-
- async def handle_get_models(self, request):
- return web.json_response([{"id": model_name, "object": "model", "owned_by": "exo", "ready": True} for model_name, _ in model_cards.items()])
- async def handle_post_chat_token_encode(self, request):
- data = await request.json()
- shard = build_base_shard(self.default_model, self.inference_engine_classname)
- messages = [parse_message(msg) for msg in data.get("messages", [])]
- tokenizer = await resolve_tokenizer(get_repo(shard.model_id, self.inference_engine_classname))
- return web.json_response({"length": len(build_prompt(tokenizer, messages)[0])})
- async def handle_get_download_progress(self, request):
- progress_data = {}
- for node_id, progress_event in self.node.node_download_progress.items():
- if isinstance(progress_event, RepoProgressEvent):
- progress_data[node_id] = progress_event.to_dict()
- else:
- print(f"Unknown progress event type: {type(progress_event)}. {progress_event}")
- return web.json_response(progress_data)
- async def handle_post_chat_completions(self, request):
- data = await request.json()
- if DEBUG >= 2: print(f"Handling chat completions request from {request.remote}: {data}")
- stream = data.get("stream", False)
- chat_request = parse_chat_request(data, self.default_model)
- if chat_request.model and chat_request.model.startswith("gpt-"): # to be compatible with ChatGPT tools, point all gpt- model requests to default model
- chat_request.model = self.default_model
- if not chat_request.model or chat_request.model not in model_cards:
- if DEBUG >= 1: print(f"Invalid model: {chat_request.model}. Supported: {list(model_cards.keys())}. Defaulting to {self.default_model}")
- chat_request.model = self.default_model
- shard = build_base_shard(chat_request.model, self.inference_engine_classname)
- if not shard:
- supported_models = [model for model, info in model_cards.items() if self.inference_engine_classname in info.get("repo", {})]
- return web.json_response(
- {"detail": f"Unsupported model: {chat_request.model} with inference engine {self.inference_engine_classname}. Supported models for this engine: {supported_models}"},
- status=400,
- )
- tokenizer = await resolve_tokenizer(get_repo(shard.model_id, self.inference_engine_classname))
- if DEBUG >= 4: print(f"Resolved tokenizer: {tokenizer}")
- prompt = build_prompt(tokenizer, chat_request.messages)
- request_id = str(uuid.uuid4())
- if self.on_chat_completion_request:
- try:
- self.on_chat_completion_request(request_id, chat_request, prompt)
- except Exception as e:
- if DEBUG >= 2: traceback.print_exc()
- # request_id = None
- # match = self.prompts.find_longest_prefix(prompt)
- # if match and len(prompt) > len(match[1].prompt):
- # if DEBUG >= 2:
- # print(f"Prompt for request starts with previous prompt {len(match[1].prompt)} of {len(prompt)}: {match[1].prompt}")
- # request_id = match[1].request_id
- # self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
- # # remove the matching prefix from the prompt
- # prompt = prompt[len(match[1].prompt):]
- # else:
- # request_id = str(uuid.uuid4())
- # self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
- callback_id = f"chatgpt-api-wait-response-{request_id}"
- callback = self.node.on_token.register(callback_id)
- if DEBUG >= 2: print(f"Sending prompt from ChatGPT api {request_id=} {shard=} {prompt=}")
- try:
- await asyncio.wait_for(asyncio.shield(asyncio.create_task(self.node.process_prompt(shard, prompt, request_id=request_id))), timeout=self.response_timeout)
- if DEBUG >= 2: print(f"Waiting for response to finish. timeout={self.response_timeout}s")
- if stream:
- response = web.StreamResponse(
- status=200,
- reason="OK",
- headers={
- "Content-Type": "text/event-stream",
- "Cache-Control": "no-cache",
- },
- )
- await response.prepare(request)
- async def stream_result(_request_id: str, tokens: List[int], is_finished: bool):
- prev_last_tokens_len = self.prev_token_lens.get(_request_id, 0)
- self.prev_token_lens[_request_id] = max(prev_last_tokens_len, len(tokens))
- new_tokens = tokens[prev_last_tokens_len:]
- finish_reason = None
- eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if hasattr(tokenizer, "_tokenizer") and isinstance(tokenizer._tokenizer,
- AutoTokenizer) else getattr(tokenizer, "eos_token_id", None)
- if len(new_tokens) > 0 and new_tokens[-1] == eos_token_id:
- new_tokens = new_tokens[:-1]
- if is_finished:
- finish_reason = "stop"
- if is_finished and not finish_reason:
- finish_reason = "length"
- completion = generate_completion(
- chat_request,
- tokenizer,
- prompt,
- request_id,
- new_tokens,
- stream,
- finish_reason,
- "chat.completion",
- )
- if DEBUG >= 2: print(f"Streaming completion: {completion}")
- try:
- await response.write(f"data: {json.dumps(completion)}\n\n".encode())
- except Exception as e:
- if DEBUG >= 2: print(f"Error streaming completion: {e}")
- if DEBUG >= 2: traceback.print_exc()
- def on_result(_request_id: str, tokens: List[int], is_finished: bool):
- if _request_id == request_id: self.stream_tasks[_request_id] = asyncio.create_task(stream_result(_request_id, tokens, is_finished))
- return _request_id == request_id and is_finished
- _, tokens, _ = await callback.wait(on_result, timeout=self.response_timeout)
- if request_id in self.stream_tasks: # in case there is still a stream task running, wait for it to complete
- if DEBUG >= 2: print("Pending stream task. Waiting for stream task to complete.")
- try:
- await asyncio.wait_for(self.stream_tasks[request_id], timeout=30)
- except asyncio.TimeoutError:
- print("WARNING: Stream task timed out. This should not happen.")
- await response.write_eof()
- return response
- else:
- _, tokens, _ = await callback.wait(
- lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished,
- timeout=self.response_timeout,
- )
- finish_reason = "length"
- eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if isinstance(getattr(tokenizer, "_tokenizer", None), AutoTokenizer) else tokenizer.eos_token_id
- if DEBUG >= 2: print(f"Checking if end of tokens result {tokens[-1]=} is {eos_token_id=}")
- if tokens[-1] == eos_token_id:
- tokens = tokens[:-1]
- finish_reason = "stop"
- return web.json_response(generate_completion(chat_request, tokenizer, prompt, request_id, tokens, stream, finish_reason, "chat.completion"))
- except asyncio.TimeoutError:
- return web.json_response({"detail": "Response generation timed out"}, status=408)
- except Exception as e:
- if DEBUG >= 2: traceback.print_exc()
- return web.json_response({"detail": f"Error processing prompt (see logs with DEBUG>=2): {str(e)}"}, status=500)
- finally:
- deregistered_callback = self.node.on_token.deregister(callback_id)
- if DEBUG >= 2: print(f"Deregister {callback_id=} {deregistered_callback=}")
- async def run(self, host: str = "0.0.0.0", port: int = 52415):
- runner = web.AppRunner(self.app)
- await runner.setup()
- site = web.TCPSite(runner, host, port)
- await site.start()
|