chatgpt_api.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. import uuid
  2. import time
  3. import asyncio
  4. import json
  5. from pathlib import Path
  6. from transformers import AutoTokenizer
  7. from typing import List, Literal, Union, Dict
  8. from aiohttp import web
  9. import aiohttp_cors
  10. import traceback
  11. from exo import DEBUG, VERSION
  12. from exo.helpers import PrefixDict
  13. from exo.inference.shard import Shard
  14. from exo.inference.tokenizers import resolve_tokenizer
  15. from exo.orchestration import Node
  16. from exo.models import model_base_shards
  17. from typing import Callable
  18. class Message:
  19. def __init__(self, role: str, content: Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]):
  20. self.role = role
  21. self.content = content
  22. def to_dict(self):
  23. return {"role": self.role, "content": self.content}
  24. class ChatCompletionRequest:
  25. def __init__(self, model: str, messages: List[Message], temperature: float):
  26. self.model = model
  27. self.messages = messages
  28. self.temperature = temperature
  29. def to_dict(self):
  30. return {"model": self.model, "messages": [message.to_dict() for message in self.messages], "temperature": self.temperature}
  31. def generate_completion(
  32. chat_request: ChatCompletionRequest,
  33. tokenizer,
  34. prompt: str,
  35. request_id: str,
  36. tokens: List[int],
  37. stream: bool,
  38. finish_reason: Union[Literal["length", "stop"], None],
  39. object_type: Literal["chat.completion", "text_completion"],
  40. ) -> dict:
  41. completion = {
  42. "id": f"chatcmpl-{request_id}",
  43. "object": object_type,
  44. "created": int(time.time()),
  45. "model": chat_request.model,
  46. "system_fingerprint": f"exo_{VERSION}",
  47. "choices": [{
  48. "index": 0,
  49. "message": {"role": "assistant", "content": tokenizer.decode(tokens)},
  50. "logprobs": None,
  51. "finish_reason": finish_reason,
  52. }],
  53. }
  54. if not stream:
  55. completion["usage"] = {
  56. "prompt_tokens": len(tokenizer.encode(prompt)),
  57. "completion_tokens": len(tokens),
  58. "total_tokens": len(tokenizer.encode(prompt)) + len(tokens),
  59. }
  60. choice = completion["choices"][0]
  61. if object_type.startswith("chat.completion"):
  62. key_name = "delta" if stream else "message"
  63. choice[key_name] = {"role": "assistant", "content": tokenizer.decode(tokens)}
  64. elif object_type == "text_completion":
  65. choice["text"] = tokenizer.decode(tokens)
  66. else:
  67. ValueError(f"Unsupported response type: {object_type}")
  68. return completion
  69. def remap_messages(messages: List[Message]) -> List[Message]:
  70. remapped_messages = []
  71. last_image = None
  72. for message in messages:
  73. if not isinstance(message.content, list):
  74. remapped_messages.append(message)
  75. continue
  76. remapped_content = []
  77. for content in message.content:
  78. if isinstance(content, dict):
  79. if content.get("type") in ["image_url", "image"]:
  80. image_url = content.get("image_url", {}).get("url") or content.get("image")
  81. if image_url:
  82. last_image = {"type": "image", "image": image_url}
  83. remapped_content.append({"type": "text", "text": "[An image was uploaded but is not displayed here]"})
  84. else:
  85. remapped_content.append(content)
  86. else:
  87. remapped_content.append(content)
  88. remapped_messages.append(Message(role=message.role, content=remapped_content))
  89. if last_image:
  90. # Replace the last image placeholder with the actual image content
  91. for message in reversed(remapped_messages):
  92. for i, content in enumerate(message.content):
  93. if isinstance(content, dict):
  94. if content.get("type") == "text" and content.get("text") == "[An image was uploaded but is not displayed here]":
  95. message.content[i] = last_image
  96. return remapped_messages
  97. return remapped_messages
  98. def build_prompt(tokenizer, _messages: List[Message]):
  99. messages = remap_messages(_messages)
  100. prompt = tokenizer.apply_chat_template([m.to_dict() for m in messages], tokenize=False, add_generation_prompt=True)
  101. image_str = None
  102. for message in messages:
  103. if not isinstance(message.content, list):
  104. continue
  105. for content in message.content:
  106. # note: we only support one image at a time right now. Multiple is possible. See: https://github.com/huggingface/transformers/blob/e68ec18ce224af879f22d904c7505a765fb77de3/docs/source/en/model_doc/llava.md?plain=1#L41
  107. # follows the convention in https://platform.openai.com/docs/guides/vision
  108. if isinstance(content, dict) and content.get("type", None) == "image":
  109. image_str = content.get("image", None)
  110. break
  111. return prompt, image_str
  112. def parse_message(data: dict):
  113. if "role" not in data or "content" not in data:
  114. raise ValueError(f"Invalid message: {data}. Must have 'role' and 'content'")
  115. return Message(data["role"], data["content"])
  116. def parse_chat_request(data: dict):
  117. return ChatCompletionRequest(
  118. data.get("model", "llama-3.1-8b"),
  119. [parse_message(msg) for msg in data["messages"]],
  120. data.get("temperature", 0.0),
  121. )
  122. class PromptSession:
  123. def __init__(self, request_id: str, timestamp: int, prompt: str):
  124. self.request_id = request_id
  125. self.timestamp = timestamp
  126. self.prompt = prompt
  127. class ChatGPTAPI:
  128. def __init__(self, node: Node, inference_engine_classname: str, response_timeout: int = 90, on_chat_completion_request: Callable[[str, ChatCompletionRequest, str], None] = None):
  129. self.node = node
  130. self.inference_engine_classname = inference_engine_classname
  131. self.response_timeout = response_timeout
  132. self.on_chat_completion_request = on_chat_completion_request
  133. self.app = web.Application(client_max_size=100*1024*1024) # 100MB to support image upload
  134. self.prompts: PrefixDict[str, PromptSession] = PrefixDict()
  135. self.prev_token_lens: Dict[str, int] = {}
  136. self.stream_tasks: Dict[str, asyncio.Task] = {}
  137. cors = aiohttp_cors.setup(self.app)
  138. cors_options = aiohttp_cors.ResourceOptions(
  139. allow_credentials=True,
  140. expose_headers="*",
  141. allow_headers="*",
  142. allow_methods="*",
  143. )
  144. cors.add(self.app.router.add_get("/models", self.handle_get_models), {"*": cors_options})
  145. cors.add(self.app.router.add_get("/v1/models", self.handle_get_models), {"*": cors_options})
  146. cors.add(self.app.router.add_post("/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
  147. cors.add(self.app.router.add_post("/v1/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
  148. cors.add(self.app.router.add_post("/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
  149. cors.add(self.app.router.add_post("/v1/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
  150. self.static_dir = Path(__file__).parent.parent.parent/"tinychat/examples/tinychat"
  151. self.app.router.add_get("/", self.handle_root)
  152. self.app.router.add_static("/", self.static_dir, name="static")
  153. # Add middleware to log every request
  154. self.app.middlewares.append(self.log_request)
  155. async def log_request(self, app, handler):
  156. async def middleware(request):
  157. if DEBUG >= 2: print(f"Received request: {request.method} {request.path}")
  158. return await handler(request)
  159. return middleware
  160. async def handle_root(self, request):
  161. return web.FileResponse(self.static_dir/"index.html")
  162. async def handle_get_models(self, request):
  163. return web.json_response([{"id": model_name, "object": "model", "owned_by": "exo", "ready": True } for model_name, _ in model_base_shards.items()])
  164. async def handle_post_chat_token_encode(self, request):
  165. data = await request.json()
  166. shard = model_base_shards.get(data.get("model", "llama-3.1-8b"), {}).get(self.inference_engine_classname)
  167. messages = [parse_message(msg) for msg in data.get("messages", [])]
  168. tokenizer = await resolve_tokenizer(shard.model_id)
  169. return web.json_response({"length": len(build_prompt(tokenizer, messages)[0])})
  170. async def handle_post_chat_completions(self, request):
  171. data = await request.json()
  172. if DEBUG >= 2: print(f"Handling chat completions request from {request.remote}: {data}")
  173. stream = data.get("stream", False)
  174. chat_request = parse_chat_request(data)
  175. if chat_request.model and chat_request.model.startswith("gpt-"): # to be compatible with ChatGPT tools, point all gpt- model requests to llama instead
  176. chat_request.model = "llama-3.1-8b"
  177. if not chat_request.model or chat_request.model not in model_base_shards:
  178. if DEBUG >= 1: print(f"Invalid model: {chat_request.model}. Supported: {list(model_base_shards.keys())}. Defaulting to llama-3.1-8b")
  179. chat_request.model = "llama-3.1-8b"
  180. shard = model_base_shards[chat_request.model].get(self.inference_engine_classname, None)
  181. if not shard:
  182. supported_models = [model for model, engines in model_base_shards.items() if self.inference_engine_classname in engines]
  183. return web.json_response(
  184. {"detail": f"Unsupported model: {chat_request.model} with inference engine {self.inference_engine_classname}. Supported models for this engine: {supported_models}"},
  185. status=400,
  186. )
  187. tokenizer = await resolve_tokenizer(shard.model_id)
  188. if DEBUG >= 4: print(f"Resolved tokenizer: {tokenizer}")
  189. prompt, image_str = build_prompt(tokenizer, chat_request.messages)
  190. request_id = str(uuid.uuid4())
  191. if self.on_chat_completion_request:
  192. try:
  193. self.on_chat_completion_request(request_id, chat_request, prompt)
  194. except Exception as e:
  195. if DEBUG >= 2: traceback.print_exc()
  196. # request_id = None
  197. # match = self.prompts.find_longest_prefix(prompt)
  198. # if match and len(prompt) > len(match[1].prompt):
  199. # if DEBUG >= 2:
  200. # print(f"Prompt for request starts with previous prompt {len(match[1].prompt)} of {len(prompt)}: {match[1].prompt}")
  201. # request_id = match[1].request_id
  202. # self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
  203. # # remove the matching prefix from the prompt
  204. # prompt = prompt[len(match[1].prompt):]
  205. # else:
  206. # request_id = str(uuid.uuid4())
  207. # self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
  208. callback_id = f"chatgpt-api-wait-response-{request_id}"
  209. callback = self.node.on_token.register(callback_id)
  210. if DEBUG >= 2: print(f"Sending prompt from ChatGPT api {request_id=} {shard=} {prompt=} {image_str=}")
  211. try:
  212. await self.node.process_prompt(shard, prompt, image_str, request_id=request_id)
  213. except Exception as e:
  214. if DEBUG >= 2: traceback.print_exc()
  215. return web.json_response({"detail": f"Error processing prompt (see logs with DEBUG>=2): {str(e)}"}, status=500)
  216. try:
  217. if DEBUG >= 2: print(f"Waiting for response to finish. timeout={self.response_timeout}s")
  218. if stream:
  219. response = web.StreamResponse(
  220. status=200,
  221. reason="OK",
  222. headers={
  223. "Content-Type": "text/event-stream",
  224. "Cache-Control": "no-cache",
  225. },
  226. )
  227. await response.prepare(request)
  228. async def stream_result(request_id: str, tokens: List[int], is_finished: bool):
  229. prev_last_tokens_len = self.prev_token_lens.get(request_id, 0)
  230. self.prev_token_lens[request_id] = max(prev_last_tokens_len, len(tokens))
  231. new_tokens = tokens[prev_last_tokens_len:]
  232. finish_reason = None
  233. eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if hasattr(tokenizer, "_tokenizer") and isinstance(tokenizer._tokenizer,
  234. AutoTokenizer) else getattr(tokenizer, "eos_token_id", None)
  235. if len(new_tokens) > 0 and new_tokens[-1] == eos_token_id:
  236. new_tokens = new_tokens[:-1]
  237. if is_finished:
  238. finish_reason = "stop"
  239. if is_finished and not finish_reason:
  240. finish_reason = "length"
  241. completion = generate_completion(
  242. chat_request,
  243. tokenizer,
  244. prompt,
  245. request_id,
  246. new_tokens,
  247. stream,
  248. finish_reason,
  249. "chat.completion",
  250. )
  251. if DEBUG >= 2: print(f"Streaming completion: {completion}")
  252. try:
  253. await response.write(f"data: {json.dumps(completion)}\n\n".encode())
  254. except Exception as e:
  255. if DEBUG >= 2: print(f"Error streaming completion: {e}")
  256. if DEBUG >= 2: traceback.print_exc()
  257. def on_result(_request_id: str, tokens: List[int], is_finished: bool):
  258. self.stream_tasks[request_id] = asyncio.create_task(stream_result(request_id, tokens, is_finished))
  259. return _request_id == request_id and is_finished
  260. _, tokens, _ = await callback.wait(on_result, timeout=self.response_timeout)
  261. if request_id in self.stream_tasks: # in case there is still a stream task running, wait for it to complete
  262. if DEBUG >= 2: print("Pending stream task. Waiting for stream task to complete.")
  263. try:
  264. await asyncio.wait_for(self.stream_tasks[request_id], timeout=30)
  265. except asyncio.TimeoutError:
  266. print("WARNING: Stream task timed out. This should not happen.")
  267. await response.write_eof()
  268. return response
  269. else:
  270. _, tokens, _ = await callback.wait(
  271. lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished,
  272. timeout=self.response_timeout,
  273. )
  274. finish_reason = "length"
  275. eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if isinstance(getattr(tokenizer, "_tokenizer", None), AutoTokenizer) else tokenizer.eos_token_id
  276. if DEBUG >= 2: print(f"Checking if end of tokens result {tokens[-1]=} is {eos_token_id=}")
  277. if tokens[-1] == eos_token_id:
  278. tokens = tokens[:-1]
  279. finish_reason = "stop"
  280. return web.json_response(generate_completion(chat_request, tokenizer, prompt, request_id, tokens, stream, finish_reason, "chat.completion"))
  281. except asyncio.TimeoutError:
  282. return web.json_response({"detail": "Response generation timed out"}, status=408)
  283. finally:
  284. deregistered_callback = self.node.on_token.deregister(callback_id)
  285. if DEBUG >= 2: print(f"Deregister {callback_id=} {deregistered_callback=}")
  286. async def run(self, host: str = "0.0.0.0", port: int = 8000):
  287. runner = web.AppRunner(self.app)
  288. await runner.setup()
  289. site = web.TCPSite(runner, host, port)
  290. await site.start()