llama.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. from typing import Tuple, Union, Optional, Dict, Any, List
  2. from tinygrad import Tensor, Variable, TinyJit, dtypes, nn, Device
  3. from tinygrad.helpers import getenv
  4. from collections import OrderedDict
  5. # https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
  6. def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, dtype=dtypes.half, rope_scaling: Optional[Dict[str, float]] = None) -> Tensor:
  7. freqs = 1.0/(theta**(Tensor.arange(0, dim, 2)[:(dim // 2)]/dim))
  8. if rope_scaling:
  9. factor = rope_scaling.get('factor', 1.0)
  10. low_freq_factor = rope_scaling.get('low_freq_factor', 1.0)
  11. high_freq_factor = rope_scaling.get('high_freq_factor', 1.0)
  12. original_max_pos_emb = rope_scaling.get('original_max_position_embeddings', end)
  13. freqs[:dim // 4] *= low_freq_factor
  14. freqs[dim // 4:] = freqs[dim // 4:].contiguous()*high_freq_factor
  15. freqs *= (original_max_pos_emb/end)**(1.0/factor)
  16. freqs = Tensor.arange(end).unsqueeze(dim=1)*freqs.unsqueeze(dim=0)
  17. # TODO: move dtype outside this
  18. return Tensor.stack(freqs.cos().cast(dtype), freqs.sin().cast(dtype), dim=-1).reshape(1, end, 1, dim // 2, 2)
  19. # (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
  20. def complex_mult(A, c, d):
  21. a, b = A[..., 0:1], A[..., 1:2]
  22. ro = a*c - b*d
  23. co = a*d + b*c
  24. return ro.cat(co, dim=-1)
  25. def apply_rotary_emb(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> Tuple[Tensor, Tensor]:
  26. assert freqs_cis.shape[1] == xq.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
  27. xq = xq.reshape(*xq.shape[0:-1], -1, 2)
  28. xk = xk.reshape(*xk.shape[0:-1], -1, 2)
  29. assert len(xq.shape) == len(xk.shape) == len(freqs_cis.shape) == 5
  30. c, d = freqs_cis[..., 0:1], freqs_cis[..., 1:2]
  31. xq_out = complex_mult(xq, c, d)
  32. xk_out = complex_mult(xk, c, d)
  33. return xq_out.flatten(3), xk_out.flatten(3)
  34. def repeat_kv(x: Tensor, n_rep: int) -> Tensor:
  35. bs, seqlen, n_kv_heads, head_dim = x.shape
  36. if n_rep == 1: return x
  37. # NOTE: this is different from x.repeat((1, 1, n_rep, 1))
  38. return x.repeat((1, 1, 1, n_rep)).reshape(bs, seqlen, n_kv_heads*n_rep, head_dim)
  39. class Attention:
  40. def __init__(self, dim, n_heads, n_kv_heads, max_context, linear=nn.Linear):
  41. self.n_heads = n_heads
  42. self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads # n_kv_heads != n_heads implies MQA [arxiv/2307.09288, A.2.1]
  43. self.head_dim = dim // n_heads
  44. self.n_rep = self.n_heads // self.n_kv_heads
  45. self.max_context = max_context
  46. self.wq = linear(dim, self.n_heads*self.head_dim, bias=False)
  47. self.wk = linear(dim, self.n_kv_heads*self.head_dim, bias=False)
  48. self.wv = linear(dim, self.n_kv_heads*self.head_dim, bias=False)
  49. self.wo = linear(self.n_heads*self.head_dim, dim, bias=False)
  50. def __call__(self, x: Tensor, start_pos: Union[Variable, int], freqs_cis: Tensor, mask: Optional[Tensor], cache: Optional[Tensor]=None) -> Tensor:
  51. if getenv("WQKV"):
  52. if not hasattr(self, 'wqkv'): self.wqkv = Tensor.cat(self.wq.weight, self.wk.weight, self.wv.weight)
  53. xqkv = x @ self.wqkv.T
  54. xq, xk, xv = xqkv.split([self.wq.weight.shape[0], self.wk.weight.shape[0], self.wv.weight.shape[0]], dim=2)
  55. else:
  56. xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
  57. xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
  58. xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
  59. xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
  60. xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
  61. bsz, seqlen, _, _ = xq.shape
  62. if cache is not None:
  63. # update the cache
  64. assert xk.dtype == xv.dtype == cache.dtype, f"{xk.dtype=}, {xv.dtype=}, {cache.dtype=}"
  65. cache.shrink((None, None, (start_pos, start_pos + seqlen), None, None)).assign(Tensor.stack(xk, xv)).realize()
  66. keys = cache[0].shrink((None, (0, start_pos + seqlen), None, None)) if start_pos > 0 else xk
  67. values = cache[1].shrink((None, (0, start_pos + seqlen), None, None)) if start_pos > 0 else xv
  68. else:
  69. keys = xk
  70. values = xv
  71. keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
  72. xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
  73. attn = xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2)
  74. attn = attn.reshape(bsz, seqlen, -1)
  75. return self.wo(attn)
  76. class FeedForward:
  77. def __init__(self, dim: int, hidden_dim: int, linear=nn.Linear):
  78. self.w1 = linear(dim, hidden_dim, bias=False)
  79. self.w2 = linear(hidden_dim, dim, bias=False)
  80. self.w3 = linear(dim, hidden_dim, bias=False) # the gate in Gated Linear Unit
  81. def __call__(self, x: Tensor) -> Tensor:
  82. return self.w2(self.w1(x).silu()*self.w3(x)) # SwiGLU [arxiv/2002.05202, eq (5)]
  83. class TransformerBlock:
  84. def __init__(self, dim: int, hidden_dim: int, n_heads: int, n_kv_heads: int, norm_eps: float, max_context: int, linear=nn.Linear, feed_forward=FeedForward):
  85. self.attention = Attention(dim, n_heads, n_kv_heads, max_context, linear)
  86. self.feed_forward = feed_forward(dim, hidden_dim, linear)
  87. self.attention_norm = nn.RMSNorm(dim, norm_eps)
  88. self.ffn_norm = nn.RMSNorm(dim, norm_eps)
  89. def __call__(self, x: Tensor, start_pos: Union[Variable, int], freqs_cis: Tensor, mask: Optional[Tensor], cache: Optional[Tensor]=None):
  90. h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask, cache=cache)
  91. return (h + self.feed_forward(self.ffn_norm(h))).contiguous()
  92. # standard openai sampling
  93. def sample_logits(logits: Tensor, temp: float, k: int, p: float, af: float, ap: float):
  94. assert logits.ndim == 1, "only works on 1d tensors"
  95. assert 0 <= p <= 1, "p must be between 0 and 1"
  96. assert 0 <= k <= logits.numel(), "k must be between 0 and numel"
  97. # if temperature is very low just use argmax
  98. if temp < 1e-6: return logits.argmax().reshape(1)
  99. # alpha sampling
  100. if af or ap:
  101. if not hasattr(sample, "alpha_counter"):
  102. setattr(sample, "alpha_counter", Tensor.zeros_like(logits, dtype=dtypes.int32).contiguous())
  103. logits = logits - (sample.alpha_counter*af + (sample.alpha_counter > 0)*ap)
  104. # replace NaNs with -inf
  105. logits = (logits != logits).where(-float("inf"), logits)
  106. # softmax
  107. t = (logits/temp).softmax()
  108. counter, counter2 = Tensor.arange(t.numel(), device=logits.device).contiguous(), Tensor.arange(t.numel() - 1, -1, -1, device=logits.device).contiguous()
  109. # top k
  110. if k:
  111. output, output_indices = Tensor.zeros(k, device=logits.device).contiguous(), Tensor.zeros(k, device=logits.device, dtype=dtypes.int32).contiguous()
  112. for i in range(k):
  113. t_argmax = (t.numel() - ((t == (t_max := t.max()))*counter2).max() - 1).cast(dtypes.default_int)
  114. output = output + t_max.unsqueeze(0).pad(((i, k - i - 1),))
  115. output_indices = output_indices + t_argmax.unsqueeze(0).pad(((i, k - i - 1),))
  116. t = (counter == t_argmax).where(0, t)
  117. # approximate top p
  118. # because we are already limited to top k elements we can do top p "without sorting"
  119. output_cumsum = output[::-1]._cumsum()[::-1] + t.sum()
  120. output = (output_cumsum >= (1 - p))*output
  121. output_indices = (output_cumsum >= (1 - p))*output_indices
  122. # sample
  123. output_idx = output.multinomial()
  124. output_token = output_indices[output_idx]
  125. else:
  126. output_token = t.multinomial()
  127. # increase alpha counter
  128. if af or ap:
  129. sample.alpha_counter = (counter == output_token).where(sample.alpha_counter + 1, sample.alpha_counter)
  130. return output_token
  131. from exo.inference.shard import Shard
  132. class Transformer:
  133. def __init__(
  134. self,
  135. dim: int,
  136. hidden_dim: int,
  137. n_heads: int,
  138. n_layers: int,
  139. norm_eps: float,
  140. vocab_size,
  141. shard: Shard = None,
  142. linear=nn.Linear,
  143. n_kv_heads=None,
  144. rope_theta=10000,
  145. max_context=1024,
  146. jit=True,
  147. feed_forward=FeedForward,
  148. rope_scaling: Optional[Dict[str, float]] = None,
  149. tie_word_embeddings=False,
  150. ):
  151. self.layers = [TransformerBlock(dim, hidden_dim, n_heads, n_kv_heads, norm_eps, max_context, linear, feed_forward=feed_forward) for _ in range(n_layers)]
  152. self.norm = nn.RMSNorm(dim, norm_eps)
  153. self.tok_embeddings = nn.Embedding(vocab_size, dim)
  154. self.output = nn.Linear(dim, vocab_size, bias=False)
  155. if tie_word_embeddings:
  156. self.output.weight = self.tok_embeddings.weight
  157. self.max_context = max_context
  158. self.freqs_cis = precompute_freqs_cis(dim // n_heads, self.max_context*2, rope_theta, rope_scaling=rope_scaling).contiguous()
  159. self.forward_jit = TinyJit(self.forward_base) if jit else None
  160. self.shard = shard
  161. def forward_base(self, x: Tensor, start_pos: Union[Variable, int], cache: Optional[List[Tensor]] = None):
  162. seqlen = x.shape[1]
  163. freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos + seqlen), None, None, None))
  164. mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-100000000"), dtype=x.dtype, device=x.device).triu(start_pos + 1).realize() if seqlen > 1 else None
  165. h = x
  166. if cache is None:
  167. cache = [None for _ in range(self.shard.start_layer, self.shard.end_layer + 1)]
  168. for i, c in zip(range(self.shard.start_layer, self.shard.end_layer + 1), cache):
  169. layer = self.layers[i]
  170. h = layer(h, start_pos, freqs_cis, mask, cache=c)
  171. if self.shard.is_last_layer():
  172. logits = self.output(self.norm(h)).float().realize()
  173. return logits
  174. else:
  175. return h
  176. def embed(self, inputs: Tensor):
  177. if self.shard.is_first_layer():
  178. h = self.tok_embeddings(inputs)
  179. else:
  180. h = inputs
  181. return h
  182. def forward(self, x: Tensor, start_pos: int, cache: Optional[List[Tensor]] = None):
  183. if x.shape[0:2] == (1, 1) and self.forward_jit is not None and start_pos != 0:
  184. return self.forward_jit(x, Variable("start_pos", 1, self.max_context).bind(start_pos), cache=cache)
  185. return self.forward_base(x, start_pos, cache=cache)
  186. def __call__(self, tokens: Tensor, start_pos: Variable, cache: Optional[List[Tensor]] = None):
  187. # TODO: better way to handle the first call v.s. the rest?
  188. h = self.embed(x)
  189. return self.forward(h, start_pos, cache=cache)
  190. # *** helpers ***
  191. def convert_from_huggingface(weights: Dict[str, Tensor], model: Transformer, n_heads: int, n_kv_heads: int):
  192. def permute(v: Tensor, n_heads: int):
  193. return v.reshape(n_heads, 2, v.shape[0] // n_heads // 2, v.shape[1]).transpose(1, 2).reshape(*v.shape[:2])
  194. keymap = {
  195. "model.embed_tokens.weight": "tok_embeddings.weight",
  196. **{f"model.layers.{l}.input_layernorm.weight": f"layers.{l}.attention_norm.weight"
  197. for l in range(len(model.layers))},
  198. **{f"model.layers.{l}.self_attn.{x}_proj.weight": f"layers.{l}.attention.w{x}.weight"
  199. for x in ["q", "k", "v", "o"]
  200. for l in range(len(model.layers))},
  201. **{f"model.layers.{l}.post_attention_layernorm.weight": f"layers.{l}.ffn_norm.weight"
  202. for l in range(len(model.layers))},
  203. **{f"model.layers.{l}.mlp.{x}_proj.weight": f"layers.{l}.feed_forward.w{y}.weight"
  204. for x, y in {"gate": "1", "down": "2", "up": "3"}.items()
  205. for l in range(len(model.layers))},
  206. "model.norm.weight": "norm.weight",
  207. "lm_head.weight": "output.weight",
  208. }
  209. sd = {}
  210. for k, v in weights.items():
  211. if ".rotary_emb." in k: continue
  212. v = v.to(Device.DEFAULT)
  213. if "model.layers" in k:
  214. if "q_proj" in k:
  215. v = permute(v, n_heads)
  216. elif "k_proj" in k:
  217. v = permute(v, n_kv_heads)
  218. if k in keymap:
  219. sd[keymap[k]] = v
  220. else:
  221. sd[k] = v
  222. return sd
  223. def fix_bf16(weights: Dict[Any, Tensor]):
  224. if getenv("SUPPORT_BF16", 1):
  225. # TODO: without casting to float16, 70B llama OOM on tinybox.
  226. return {k: v.cast(dtypes.float16) if v.dtype == dtypes.bfloat16 else v for k, v in weights.items()}
  227. # TODO: check if device supports bf16
  228. return {k: v.llvm_bf16_cast(dtypes.half).to(v.device) if v.dtype == dtypes.bfloat16 else v for k, v in weights.items()}