sharded_inference_engine.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. import numpy as np
  2. import mlx.core as mx
  3. from ..inference_engine import InferenceEngine
  4. from .sharded_model import StatefulShardedModel
  5. from .sharded_utils import load_shard, get_image_from_str
  6. from ..shard import Shard
  7. from typing import Optional
  8. from exo.download.shard_download import ShardDownloader
  9. import asyncio
  10. from concurrent.futures import ThreadPoolExecutor
  11. class MLXDynamicShardInferenceEngine(InferenceEngine):
  12. def __init__(self, shard_downloader: ShardDownloader):
  13. self.shard = None
  14. self.shard_downloader = shard_downloader
  15. self.executor = ThreadPoolExecutor(max_workers=1)
  16. async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, image_str: Optional[str] = None, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
  17. await self.ensure_shard(shard)
  18. loop = asyncio.get_running_loop()
  19. if image_str:
  20. image = await get_image_from_str(image_str)
  21. inputs = await loop.run_in_executor(self.executor, self.tokenizer, prompt, image, return_tensors="np")
  22. pixel_values = mx.array(inputs["pixel_values"])
  23. input_ids = mx.array(inputs["input_ids"])
  24. output_data: np.ndarray = np.array(await loop.run_in_executor(self.executor, self.stateful_sharded_model.step, request_id, input_ids, pixel_values))
  25. else:
  26. input_ids = mx.array(await loop.run_in_executor(self.executor, self.tokenizer.encode, prompt))
  27. output_data: np.ndarray = np.array(await loop.run_in_executor(self.executor, self.stateful_sharded_model.step, request_id, input_ids))
  28. return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
  29. async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
  30. await self.ensure_shard(shard)
  31. output_data: np.ndarray = np.array(await asyncio.get_running_loop().run_in_executor(self.executor, self.stateful_sharded_model.step, request_id, mx.array(input_data)))
  32. return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
  33. async def ensure_shard(self, shard: Shard):
  34. if self.shard == shard:
  35. return
  36. model_path = await self.shard_downloader.ensure_shard(shard)
  37. if self.shard != shard:
  38. loop = asyncio.get_running_loop()
  39. def load_shard_wrapper(): return asyncio.run(load_shard(model_path, shard))
  40. model_shard, self.tokenizer = await loop.run_in_executor(self.executor, load_shard_wrapper)
  41. self.stateful_sharded_model = await loop.run_in_executor(self.executor, StatefulShardedModel, shard, model_shard)
  42. self.shard = shard