inference.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. from pathlib import Path
  2. import json
  3. import os
  4. from exo.inference.tinygrad.models.llama import Transformer, TransformerShard, convert_from_huggingface, fix_bf16, sample_logits
  5. from exo.inference.shard import Shard
  6. from exo.inference.tokenizers import resolve_tokenizer
  7. from tinygrad.nn.state import safe_save, safe_load, get_state_dict, load_state_dict
  8. from tinygrad import Tensor, nn, Context, TinyJit
  9. from exo.inference.inference_engine import InferenceEngine
  10. import numpy as np
  11. from exo.inference.tinygrad.tinygrad_helpers import concat_weights, load
  12. from exo.download.shard_download import ShardDownloader
  13. from concurrent.futures import ThreadPoolExecutor
  14. from .stateful_model import make_prompt_state
  15. from .losses import length_masked_ce_loss
  16. from collections import OrderedDict
  17. import asyncio
  18. from typing import Optional
  19. Tensor.no_grad = True
  20. # default settings
  21. TEMPERATURE = int(os.getenv("TEMPERATURE", 0.85))
  22. TOP_K = 25
  23. TOP_P = 0.9
  24. ALPHA_F = 0.1
  25. ALPHA_P = 0.0
  26. MODEL_PARAMS = {
  27. "1B": {
  28. "args": {
  29. "dim": 2048, "n_heads": 32, "n_kv_heads": 8, "n_layers": 16, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 8192,
  30. "rope_scaling": {"factor": 32.0, "high_freq_factor": 4.0, "low_freq_factor": 1.0, "original_max_position_embeddings": 8192, "rope_type": "llama3"}, "tie_word_embeddings": True
  31. }, "files": 1
  32. }, "3B": {
  33. "args": {
  34. "dim": 3072, "n_heads": 24, "n_kv_heads": 8, "n_layers": 28, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 8192,
  35. "rope_scaling": {"factor": 32.0, "high_freq_factor": 4.0, "low_freq_factor": 1.0, "original_max_position_embeddings": 8192, "rope_type": "llama3"}, "tie_word_embeddings": True
  36. }, "files": 1
  37. }, "8B": {"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336}, "files": 1},
  38. "70B": {"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672}, "files": 8}
  39. }
  40. def build_transformer(model_path: Path, shard: Shard, model_size="8B", device=None):
  41. # build model
  42. linear = nn.Linear
  43. model = Transformer(**MODEL_PARAMS[model_size]["args"], linear=linear, max_context=8192, jit=True, shard=shard)
  44. # load weights
  45. if model_path.is_dir():
  46. if (model_path/"model.safetensors.index.json").exists(): weights = load(str(model_path/"model.safetensors.index.json"), shard)
  47. elif (model_path/"model.safetensors").exists(): weights = load(str(model_path/"model.safetensors"), shard)
  48. else: weights = concat_weights([load(str(model_path/f"consolidated.{i:02d}.pth"), shard) for i in range(MODEL_PARAMS[model_size]["files"])], device[0] if isinstance(device, tuple) else device)
  49. else:
  50. weights = load(str(model_path), shard)
  51. weights = convert_from_huggingface(weights, model, MODEL_PARAMS[model_size]["args"]["n_heads"], MODEL_PARAMS[model_size]["args"]["n_kv_heads"])
  52. weights = fix_bf16(weights)
  53. with Context(BEAM=0):
  54. # replace weights in model
  55. load_state_dict(model, weights, strict=False, consume=False) # consume=True
  56. model = TransformerShard(shard, model)
  57. return model
  58. class TinygradDynamicShardInferenceEngine(InferenceEngine):
  59. def __init__(self, shard_downloader: ShardDownloader):
  60. self.shard = None
  61. self.shard_downloader = shard_downloader
  62. self.executor = ThreadPoolExecutor(max_workers=1)
  63. self.states = OrderedDict()
  64. def poll_state(self, x, request_id: str, max_states=2):
  65. if request_id not in self.states:
  66. if len(self.states) >= max_states:
  67. self.states.popitem(last=False)
  68. self.states[request_id] = make_prompt_state(x, self.model)
  69. else:
  70. self.states.move_to_end(request_id)
  71. state = self.states[request_id]
  72. return {"start_pos": state.start, "cache": state.cache}
  73. async def sample(self, x: np.ndarray, temp=TEMPERATURE, top_p: float = 0.0) -> np.ndarray:
  74. logits = x[:, -1, :]
  75. def sample_wrapper():
  76. return sample_logits(Tensor(logits).flatten(), temp, 0, 0.8, top_p, 0.0).realize().numpy().astype(int)
  77. return await asyncio.get_running_loop().run_in_executor(self.executor, sample_wrapper)
  78. async def encode(self, shard: Shard, prompt: str) -> np.ndarray:
  79. await self.ensure_shard(shard)
  80. tokens = await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.encode, prompt)
  81. return await asyncio.get_running_loop().run_in_executor(self.executor, np.array, tokens)
  82. async def decode(self, shard: Shard, tokens) -> str:
  83. await self.ensure_shard(shard)
  84. tokens = await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.decode, tokens)
  85. return tokens
  86. async def load_checkpoint(self, shard: Shard, path: str):
  87. await self.ensure_shard(shard)
  88. state_dict = safe_load(path)
  89. await asyncio.get_running_loop().run_in_executor(self.executor, load_state_dict, self.model, state_dict)
  90. async def save_checkpoint(self, shard: Shard, path: str):
  91. await self.ensure_shard(shard)
  92. state_dict = await asyncio.get_running_loop().run_in_executor(self.executor, get_state_dict, self.model)
  93. safe_save(state_dict, path)
  94. async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> tuple[np.ndarray, Optional[dict]]:
  95. await self.ensure_shard(shard)
  96. def wrap_infer():
  97. x = Tensor(input_data)
  98. h = self.model.embed(x)
  99. state = self.poll_state(h, request_id)
  100. out = self.model.forward(h, **state)
  101. self.states[request_id].start += x.shape[1]
  102. return out.realize()
  103. output_data = await asyncio.get_running_loop().run_in_executor(self.executor, wrap_infer)
  104. return output_data.numpy(), inference_state
  105. async def evaluate(self, request_id: str, shard: Shard, inputs, targets, lengths, loss=length_masked_ce_loss):
  106. def step(x, y, l):
  107. Tensor.training = False
  108. return self.session['loss'](self.model, x, y, l)
  109. await self.ensure_shard(shard)
  110. score = await asyncio.get_running_loop().run_in_executor(self.executor, lambda: self.session['jit'](Tensor(inputs), targets, lengths))
  111. out = score.numpy()
  112. return out
  113. async def train(self, request_id: str, shard: Shard, inputs, targets, lengths, loss=length_masked_ce_loss, opt=nn.optim.Adam, lr=1e-5):
  114. def step(x, y, l):
  115. Tensor.training = True
  116. score = self.session['loss'](self.model, x, y, l)
  117. self.session['opt'].zero_grad()
  118. score.backward()
  119. self.session['opt'].step()
  120. return score
  121. await self.ensure_shard(shard)
  122. score = await asyncio.get_running_loop().run_in_executor(self.executor, lambda: self.session['jit'](Tensor(inputs), targets, lengths).realize())
  123. return loss.numpy(), loss.numpy()
  124. async def ensure_shard(self, shard: Shard):
  125. if self.shard == shard:
  126. return
  127. model_path = await self.shard_downloader.ensure_shard(shard, self.__class__.__name__)
  128. if self.shard != shard:
  129. loop = asyncio.get_running_loop()
  130. parameters = "1B" if "1b" in shard.model_id.lower() else "3B" if "3b" in shard.model_id.lower() else "8B" if "8b" in shard.model_id.lower() else "70B"
  131. model_shard = await loop.run_in_executor(self.executor, build_transformer, model_path, shard, parameters)
  132. tokenizer_path = str((model_path if model_path.is_dir() else model_path.parent))
  133. self.tokenizer = await resolve_tokenizer(tokenizer_path)
  134. self.shard = shard
  135. self.model = model_shard