resize.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. package imaging
  2. import (
  3. "image"
  4. "math"
  5. )
  6. type indexWeight struct {
  7. index int
  8. weight float64
  9. }
  10. func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) [][]indexWeight {
  11. du := float64(srcSize) / float64(dstSize)
  12. scale := du
  13. if scale < 1.0 {
  14. scale = 1.0
  15. }
  16. ru := math.Ceil(scale * filter.Support)
  17. out := make([][]indexWeight, dstSize)
  18. tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2)
  19. for v := 0; v < dstSize; v++ {
  20. fu := (float64(v)+0.5)*du - 0.5
  21. begin := int(math.Ceil(fu - ru))
  22. if begin < 0 {
  23. begin = 0
  24. }
  25. end := int(math.Floor(fu + ru))
  26. if end > srcSize-1 {
  27. end = srcSize - 1
  28. }
  29. var sum float64
  30. for u := begin; u <= end; u++ {
  31. w := filter.Kernel((float64(u) - fu) / scale)
  32. if w != 0 {
  33. sum += w
  34. tmp = append(tmp, indexWeight{index: u, weight: w})
  35. }
  36. }
  37. if sum != 0 {
  38. for i := range tmp {
  39. tmp[i].weight /= sum
  40. }
  41. }
  42. out[v] = tmp
  43. tmp = tmp[len(tmp):]
  44. }
  45. return out
  46. }
  47. // Resize resizes the image to the specified width and height using the specified resampling
  48. // filter and returns the transformed image. If one of width or height is 0, the image aspect
  49. // ratio is preserved.
  50. //
  51. // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
  52. // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
  53. //
  54. // Usage example:
  55. //
  56. // dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos)
  57. //
  58. func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
  59. dstW, dstH := width, height
  60. if dstW < 0 || dstH < 0 {
  61. return &image.NRGBA{}
  62. }
  63. if dstW == 0 && dstH == 0 {
  64. return &image.NRGBA{}
  65. }
  66. srcW := img.Bounds().Dx()
  67. srcH := img.Bounds().Dy()
  68. if srcW <= 0 || srcH <= 0 {
  69. return &image.NRGBA{}
  70. }
  71. // If new width or height is 0 then preserve aspect ratio, minimum 1px.
  72. if dstW == 0 {
  73. tmpW := float64(dstH) * float64(srcW) / float64(srcH)
  74. dstW = int(math.Max(1.0, math.Floor(tmpW+0.5)))
  75. }
  76. if dstH == 0 {
  77. tmpH := float64(dstW) * float64(srcH) / float64(srcW)
  78. dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
  79. }
  80. if filter.Support <= 0 {
  81. // Nearest-neighbor special case.
  82. return resizeNearest(img, dstW, dstH)
  83. }
  84. if srcW != dstW && srcH != dstH {
  85. return resizeVertical(resizeHorizontal(img, dstW, filter), dstH, filter)
  86. }
  87. if srcW != dstW {
  88. return resizeHorizontal(img, dstW, filter)
  89. }
  90. if srcH != dstH {
  91. return resizeVertical(img, dstH, filter)
  92. }
  93. return Clone(img)
  94. }
  95. func resizeHorizontal(img image.Image, width int, filter ResampleFilter) *image.NRGBA {
  96. src := newScanner(img)
  97. dst := image.NewNRGBA(image.Rect(0, 0, width, src.h))
  98. weights := precomputeWeights(width, src.w, filter)
  99. parallel(0, src.h, func(ys <-chan int) {
  100. scanLine := make([]uint8, src.w*4)
  101. for y := range ys {
  102. src.scan(0, y, src.w, y+1, scanLine)
  103. j0 := y * dst.Stride
  104. for x := range weights {
  105. var r, g, b, a float64
  106. for _, w := range weights[x] {
  107. i := w.index * 4
  108. s := scanLine[i : i+4 : i+4]
  109. aw := float64(s[3]) * w.weight
  110. r += float64(s[0]) * aw
  111. g += float64(s[1]) * aw
  112. b += float64(s[2]) * aw
  113. a += aw
  114. }
  115. if a != 0 {
  116. aInv := 1 / a
  117. j := j0 + x*4
  118. d := dst.Pix[j : j+4 : j+4]
  119. d[0] = clamp(r * aInv)
  120. d[1] = clamp(g * aInv)
  121. d[2] = clamp(b * aInv)
  122. d[3] = clamp(a)
  123. }
  124. }
  125. }
  126. })
  127. return dst
  128. }
  129. func resizeVertical(img image.Image, height int, filter ResampleFilter) *image.NRGBA {
  130. src := newScanner(img)
  131. dst := image.NewNRGBA(image.Rect(0, 0, src.w, height))
  132. weights := precomputeWeights(height, src.h, filter)
  133. parallel(0, src.w, func(xs <-chan int) {
  134. scanLine := make([]uint8, src.h*4)
  135. for x := range xs {
  136. src.scan(x, 0, x+1, src.h, scanLine)
  137. for y := range weights {
  138. var r, g, b, a float64
  139. for _, w := range weights[y] {
  140. i := w.index * 4
  141. s := scanLine[i : i+4 : i+4]
  142. aw := float64(s[3]) * w.weight
  143. r += float64(s[0]) * aw
  144. g += float64(s[1]) * aw
  145. b += float64(s[2]) * aw
  146. a += aw
  147. }
  148. if a != 0 {
  149. aInv := 1 / a
  150. j := y*dst.Stride + x*4
  151. d := dst.Pix[j : j+4 : j+4]
  152. d[0] = clamp(r * aInv)
  153. d[1] = clamp(g * aInv)
  154. d[2] = clamp(b * aInv)
  155. d[3] = clamp(a)
  156. }
  157. }
  158. }
  159. })
  160. return dst
  161. }
  162. // resizeNearest is a fast nearest-neighbor resize, no filtering.
  163. func resizeNearest(img image.Image, width, height int) *image.NRGBA {
  164. dst := image.NewNRGBA(image.Rect(0, 0, width, height))
  165. dx := float64(img.Bounds().Dx()) / float64(width)
  166. dy := float64(img.Bounds().Dy()) / float64(height)
  167. if dx > 1 && dy > 1 {
  168. src := newScanner(img)
  169. parallel(0, height, func(ys <-chan int) {
  170. for y := range ys {
  171. srcY := int((float64(y) + 0.5) * dy)
  172. dstOff := y * dst.Stride
  173. for x := 0; x < width; x++ {
  174. srcX := int((float64(x) + 0.5) * dx)
  175. src.scan(srcX, srcY, srcX+1, srcY+1, dst.Pix[dstOff:dstOff+4])
  176. dstOff += 4
  177. }
  178. }
  179. })
  180. } else {
  181. src := toNRGBA(img)
  182. parallel(0, height, func(ys <-chan int) {
  183. for y := range ys {
  184. srcY := int((float64(y) + 0.5) * dy)
  185. srcOff0 := srcY * src.Stride
  186. dstOff := y * dst.Stride
  187. for x := 0; x < width; x++ {
  188. srcX := int((float64(x) + 0.5) * dx)
  189. srcOff := srcOff0 + srcX*4
  190. copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4])
  191. dstOff += 4
  192. }
  193. }
  194. })
  195. }
  196. return dst
  197. }
  198. // Fit scales down the image using the specified resample filter to fit the specified
  199. // maximum width and height and returns the transformed image.
  200. //
  201. // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
  202. // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
  203. //
  204. // Usage example:
  205. //
  206. // dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
  207. //
  208. func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
  209. maxW, maxH := width, height
  210. if maxW <= 0 || maxH <= 0 {
  211. return &image.NRGBA{}
  212. }
  213. srcBounds := img.Bounds()
  214. srcW := srcBounds.Dx()
  215. srcH := srcBounds.Dy()
  216. if srcW <= 0 || srcH <= 0 {
  217. return &image.NRGBA{}
  218. }
  219. if srcW <= maxW && srcH <= maxH {
  220. return Clone(img)
  221. }
  222. srcAspectRatio := float64(srcW) / float64(srcH)
  223. maxAspectRatio := float64(maxW) / float64(maxH)
  224. var newW, newH int
  225. if srcAspectRatio > maxAspectRatio {
  226. newW = maxW
  227. newH = int(float64(newW) / srcAspectRatio)
  228. } else {
  229. newH = maxH
  230. newW = int(float64(newH) * srcAspectRatio)
  231. }
  232. return Resize(img, newW, newH, filter)
  233. }
  234. // Fill scales the image to the smallest possible size that will cover the specified dimensions,
  235. // crops the resized image to the specified dimensions using the given anchor point and returns
  236. // the transformed image.
  237. //
  238. // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
  239. // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
  240. //
  241. // Usage example:
  242. //
  243. // dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos)
  244. //
  245. func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
  246. minW, minH := width, height
  247. if minW <= 0 || minH <= 0 {
  248. return &image.NRGBA{}
  249. }
  250. srcBounds := img.Bounds()
  251. srcW := srcBounds.Dx()
  252. srcH := srcBounds.Dy()
  253. if srcW <= 0 || srcH <= 0 {
  254. return &image.NRGBA{}
  255. }
  256. if srcW == minW && srcH == minH {
  257. return Clone(img)
  258. }
  259. srcAspectRatio := float64(srcW) / float64(srcH)
  260. minAspectRatio := float64(minW) / float64(minH)
  261. var tmp *image.NRGBA
  262. if srcAspectRatio < minAspectRatio {
  263. scale := float64(srcW) / float64(minW)
  264. tmp = CropAnchor(img, srcW, int(float64(minH)*scale), anchor)
  265. } else {
  266. scale := float64(srcH) / float64(minH)
  267. tmp = CropAnchor(img, int(float64(minW)*scale), srcH, anchor)
  268. }
  269. return Resize(tmp, minW, minH, filter)
  270. }
  271. // Thumbnail scales the image up or down using the specified resample filter, crops it
  272. // to the specified width and hight and returns the transformed image.
  273. //
  274. // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
  275. // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
  276. //
  277. // Usage example:
  278. //
  279. // dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos)
  280. //
  281. func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
  282. return Fill(img, width, height, Center, filter)
  283. }
  284. // ResampleFilter is a resampling filter struct. It can be used to define custom filters.
  285. //
  286. // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
  287. // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
  288. //
  289. // General filter recommendations:
  290. //
  291. // - Lanczos
  292. // High-quality resampling filter for photographic images yielding sharp results.
  293. // It's slower than cubic filters (see below).
  294. //
  295. // - CatmullRom
  296. // A sharp cubic filter. It's a good filter for both upscaling and downscaling if sharp results are needed.
  297. //
  298. // - MitchellNetravali
  299. // A high quality cubic filter that produces smoother results with less ringing artifacts than CatmullRom.
  300. //
  301. // - BSpline
  302. // A good filter if a very smooth output is needed.
  303. //
  304. // - Linear
  305. // Bilinear interpolation filter, produces reasonably good, smooth output.
  306. // It's faster than cubic filters.
  307. //
  308. // - Box
  309. // Simple and fast averaging filter appropriate for downscaling.
  310. // When upscaling it's similar to NearestNeighbor.
  311. //
  312. // - NearestNeighbor
  313. // Fastest resampling filter, no antialiasing.
  314. //
  315. type ResampleFilter struct {
  316. Support float64
  317. Kernel func(float64) float64
  318. }
  319. // NearestNeighbor is a nearest-neighbor filter (no anti-aliasing).
  320. var NearestNeighbor ResampleFilter
  321. // Box filter (averaging pixels).
  322. var Box ResampleFilter
  323. // Linear filter.
  324. var Linear ResampleFilter
  325. // Hermite cubic spline filter (BC-spline; B=0; C=0).
  326. var Hermite ResampleFilter
  327. // MitchellNetravali is Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3).
  328. var MitchellNetravali ResampleFilter
  329. // CatmullRom is a Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5).
  330. var CatmullRom ResampleFilter
  331. // BSpline is a smooth cubic filter (BC-spline; B=1; C=0).
  332. var BSpline ResampleFilter
  333. // Gaussian is a Gaussian blurring Filter.
  334. var Gaussian ResampleFilter
  335. // Bartlett is a Bartlett-windowed sinc filter (3 lobes).
  336. var Bartlett ResampleFilter
  337. // Lanczos filter (3 lobes).
  338. var Lanczos ResampleFilter
  339. // Hann is a Hann-windowed sinc filter (3 lobes).
  340. var Hann ResampleFilter
  341. // Hamming is a Hamming-windowed sinc filter (3 lobes).
  342. var Hamming ResampleFilter
  343. // Blackman is a Blackman-windowed sinc filter (3 lobes).
  344. var Blackman ResampleFilter
  345. // Welch is a Welch-windowed sinc filter (parabolic window, 3 lobes).
  346. var Welch ResampleFilter
  347. // Cosine is a Cosine-windowed sinc filter (3 lobes).
  348. var Cosine ResampleFilter
  349. func bcspline(x, b, c float64) float64 {
  350. var y float64
  351. x = math.Abs(x)
  352. if x < 1.0 {
  353. y = ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6
  354. } else if x < 2.0 {
  355. y = ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6
  356. }
  357. return y
  358. }
  359. func sinc(x float64) float64 {
  360. if x == 0 {
  361. return 1
  362. }
  363. return math.Sin(math.Pi*x) / (math.Pi * x)
  364. }
  365. func init() {
  366. NearestNeighbor = ResampleFilter{
  367. Support: 0.0, // special case - not applying the filter
  368. }
  369. Box = ResampleFilter{
  370. Support: 0.5,
  371. Kernel: func(x float64) float64 {
  372. x = math.Abs(x)
  373. if x <= 0.5 {
  374. return 1.0
  375. }
  376. return 0
  377. },
  378. }
  379. Linear = ResampleFilter{
  380. Support: 1.0,
  381. Kernel: func(x float64) float64 {
  382. x = math.Abs(x)
  383. if x < 1.0 {
  384. return 1.0 - x
  385. }
  386. return 0
  387. },
  388. }
  389. Hermite = ResampleFilter{
  390. Support: 1.0,
  391. Kernel: func(x float64) float64 {
  392. x = math.Abs(x)
  393. if x < 1.0 {
  394. return bcspline(x, 0.0, 0.0)
  395. }
  396. return 0
  397. },
  398. }
  399. MitchellNetravali = ResampleFilter{
  400. Support: 2.0,
  401. Kernel: func(x float64) float64 {
  402. x = math.Abs(x)
  403. if x < 2.0 {
  404. return bcspline(x, 1.0/3.0, 1.0/3.0)
  405. }
  406. return 0
  407. },
  408. }
  409. CatmullRom = ResampleFilter{
  410. Support: 2.0,
  411. Kernel: func(x float64) float64 {
  412. x = math.Abs(x)
  413. if x < 2.0 {
  414. return bcspline(x, 0.0, 0.5)
  415. }
  416. return 0
  417. },
  418. }
  419. BSpline = ResampleFilter{
  420. Support: 2.0,
  421. Kernel: func(x float64) float64 {
  422. x = math.Abs(x)
  423. if x < 2.0 {
  424. return bcspline(x, 1.0, 0.0)
  425. }
  426. return 0
  427. },
  428. }
  429. Gaussian = ResampleFilter{
  430. Support: 2.0,
  431. Kernel: func(x float64) float64 {
  432. x = math.Abs(x)
  433. if x < 2.0 {
  434. return math.Exp(-2 * x * x)
  435. }
  436. return 0
  437. },
  438. }
  439. Bartlett = ResampleFilter{
  440. Support: 3.0,
  441. Kernel: func(x float64) float64 {
  442. x = math.Abs(x)
  443. if x < 3.0 {
  444. return sinc(x) * (3.0 - x) / 3.0
  445. }
  446. return 0
  447. },
  448. }
  449. Lanczos = ResampleFilter{
  450. Support: 3.0,
  451. Kernel: func(x float64) float64 {
  452. x = math.Abs(x)
  453. if x < 3.0 {
  454. return sinc(x) * sinc(x/3.0)
  455. }
  456. return 0
  457. },
  458. }
  459. Hann = ResampleFilter{
  460. Support: 3.0,
  461. Kernel: func(x float64) float64 {
  462. x = math.Abs(x)
  463. if x < 3.0 {
  464. return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0))
  465. }
  466. return 0
  467. },
  468. }
  469. Hamming = ResampleFilter{
  470. Support: 3.0,
  471. Kernel: func(x float64) float64 {
  472. x = math.Abs(x)
  473. if x < 3.0 {
  474. return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0))
  475. }
  476. return 0
  477. },
  478. }
  479. Blackman = ResampleFilter{
  480. Support: 3.0,
  481. Kernel: func(x float64) float64 {
  482. x = math.Abs(x)
  483. if x < 3.0 {
  484. return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0))
  485. }
  486. return 0
  487. },
  488. }
  489. Welch = ResampleFilter{
  490. Support: 3.0,
  491. Kernel: func(x float64) float64 {
  492. x = math.Abs(x)
  493. if x < 3.0 {
  494. return sinc(x) * (1.0 - (x * x / 9.0))
  495. }
  496. return 0
  497. },
  498. }
  499. Cosine = ResampleFilter{
  500. Support: 3.0,
  501. Kernel: func(x float64) float64 {
  502. x = math.Abs(x)
  503. if x < 3.0 {
  504. return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0))
  505. }
  506. return 0
  507. },
  508. }
  509. }