syscall_linux.go 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704
  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // Linux system calls.
  5. // This file is compiled as ordinary Go code,
  6. // but it is also input to mksyscall,
  7. // which parses the //sys lines and generates system call stubs.
  8. // Note that sometimes we use a lowercase //sys name and
  9. // wrap it in our own nicer implementation.
  10. package unix
  11. import (
  12. "encoding/binary"
  13. "net"
  14. "syscall"
  15. "unsafe"
  16. )
  17. /*
  18. * Wrapped
  19. */
  20. func Access(path string, mode uint32) (err error) {
  21. return Faccessat(AT_FDCWD, path, mode, 0)
  22. }
  23. func Chmod(path string, mode uint32) (err error) {
  24. return Fchmodat(AT_FDCWD, path, mode, 0)
  25. }
  26. func Chown(path string, uid int, gid int) (err error) {
  27. return Fchownat(AT_FDCWD, path, uid, gid, 0)
  28. }
  29. func Creat(path string, mode uint32) (fd int, err error) {
  30. return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
  31. }
  32. //sys fchmodat(dirfd int, path string, mode uint32) (err error)
  33. func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
  34. // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
  35. // and check the flags. Otherwise the mode would be applied to the symlink
  36. // destination which is not what the user expects.
  37. if flags&^AT_SYMLINK_NOFOLLOW != 0 {
  38. return EINVAL
  39. } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
  40. return EOPNOTSUPP
  41. }
  42. return fchmodat(dirfd, path, mode)
  43. }
  44. //sys ioctl(fd int, req uint, arg uintptr) (err error)
  45. // ioctl itself should not be exposed directly, but additional get/set
  46. // functions for specific types are permissible.
  47. // IoctlSetPointerInt performs an ioctl operation which sets an
  48. // integer value on fd, using the specified request number. The ioctl
  49. // argument is called with a pointer to the integer value, rather than
  50. // passing the integer value directly.
  51. func IoctlSetPointerInt(fd int, req uint, value int) error {
  52. v := int32(value)
  53. return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
  54. }
  55. // IoctlSetInt performs an ioctl operation which sets an integer value
  56. // on fd, using the specified request number.
  57. func IoctlSetInt(fd int, req uint, value int) error {
  58. return ioctl(fd, req, uintptr(value))
  59. }
  60. func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
  61. return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
  62. }
  63. func ioctlSetTermios(fd int, req uint, value *Termios) error {
  64. return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
  65. }
  66. // IoctlGetInt performs an ioctl operation which gets an integer value
  67. // from fd, using the specified request number.
  68. func IoctlGetInt(fd int, req uint) (int, error) {
  69. var value int
  70. err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  71. return value, err
  72. }
  73. func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
  74. var value Winsize
  75. err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  76. return &value, err
  77. }
  78. func IoctlGetTermios(fd int, req uint) (*Termios, error) {
  79. var value Termios
  80. err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  81. return &value, err
  82. }
  83. //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
  84. func Link(oldpath string, newpath string) (err error) {
  85. return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
  86. }
  87. func Mkdir(path string, mode uint32) (err error) {
  88. return Mkdirat(AT_FDCWD, path, mode)
  89. }
  90. func Mknod(path string, mode uint32, dev int) (err error) {
  91. return Mknodat(AT_FDCWD, path, mode, dev)
  92. }
  93. func Open(path string, mode int, perm uint32) (fd int, err error) {
  94. return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
  95. }
  96. //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
  97. func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
  98. return openat(dirfd, path, flags|O_LARGEFILE, mode)
  99. }
  100. //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
  101. func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
  102. if len(fds) == 0 {
  103. return ppoll(nil, 0, timeout, sigmask)
  104. }
  105. return ppoll(&fds[0], len(fds), timeout, sigmask)
  106. }
  107. //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
  108. func Readlink(path string, buf []byte) (n int, err error) {
  109. return Readlinkat(AT_FDCWD, path, buf)
  110. }
  111. func Rename(oldpath string, newpath string) (err error) {
  112. return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
  113. }
  114. func Rmdir(path string) error {
  115. return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
  116. }
  117. //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
  118. func Symlink(oldpath string, newpath string) (err error) {
  119. return Symlinkat(oldpath, AT_FDCWD, newpath)
  120. }
  121. func Unlink(path string) error {
  122. return Unlinkat(AT_FDCWD, path, 0)
  123. }
  124. //sys Unlinkat(dirfd int, path string, flags int) (err error)
  125. func Utimes(path string, tv []Timeval) error {
  126. if tv == nil {
  127. err := utimensat(AT_FDCWD, path, nil, 0)
  128. if err != ENOSYS {
  129. return err
  130. }
  131. return utimes(path, nil)
  132. }
  133. if len(tv) != 2 {
  134. return EINVAL
  135. }
  136. var ts [2]Timespec
  137. ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
  138. ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
  139. err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
  140. if err != ENOSYS {
  141. return err
  142. }
  143. return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  144. }
  145. //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
  146. func UtimesNano(path string, ts []Timespec) error {
  147. if ts == nil {
  148. err := utimensat(AT_FDCWD, path, nil, 0)
  149. if err != ENOSYS {
  150. return err
  151. }
  152. return utimes(path, nil)
  153. }
  154. if len(ts) != 2 {
  155. return EINVAL
  156. }
  157. err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
  158. if err != ENOSYS {
  159. return err
  160. }
  161. // If the utimensat syscall isn't available (utimensat was added to Linux
  162. // in 2.6.22, Released, 8 July 2007) then fall back to utimes
  163. var tv [2]Timeval
  164. for i := 0; i < 2; i++ {
  165. tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
  166. }
  167. return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  168. }
  169. func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
  170. if ts == nil {
  171. return utimensat(dirfd, path, nil, flags)
  172. }
  173. if len(ts) != 2 {
  174. return EINVAL
  175. }
  176. return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
  177. }
  178. func Futimesat(dirfd int, path string, tv []Timeval) error {
  179. if tv == nil {
  180. return futimesat(dirfd, path, nil)
  181. }
  182. if len(tv) != 2 {
  183. return EINVAL
  184. }
  185. return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  186. }
  187. func Futimes(fd int, tv []Timeval) (err error) {
  188. // Believe it or not, this is the best we can do on Linux
  189. // (and is what glibc does).
  190. return Utimes("/proc/self/fd/"+itoa(fd), tv)
  191. }
  192. const ImplementsGetwd = true
  193. //sys Getcwd(buf []byte) (n int, err error)
  194. func Getwd() (wd string, err error) {
  195. var buf [PathMax]byte
  196. n, err := Getcwd(buf[0:])
  197. if err != nil {
  198. return "", err
  199. }
  200. // Getcwd returns the number of bytes written to buf, including the NUL.
  201. if n < 1 || n > len(buf) || buf[n-1] != 0 {
  202. return "", EINVAL
  203. }
  204. return string(buf[0 : n-1]), nil
  205. }
  206. func Getgroups() (gids []int, err error) {
  207. n, err := getgroups(0, nil)
  208. if err != nil {
  209. return nil, err
  210. }
  211. if n == 0 {
  212. return nil, nil
  213. }
  214. // Sanity check group count. Max is 1<<16 on Linux.
  215. if n < 0 || n > 1<<20 {
  216. return nil, EINVAL
  217. }
  218. a := make([]_Gid_t, n)
  219. n, err = getgroups(n, &a[0])
  220. if err != nil {
  221. return nil, err
  222. }
  223. gids = make([]int, n)
  224. for i, v := range a[0:n] {
  225. gids[i] = int(v)
  226. }
  227. return
  228. }
  229. func Setgroups(gids []int) (err error) {
  230. if len(gids) == 0 {
  231. return setgroups(0, nil)
  232. }
  233. a := make([]_Gid_t, len(gids))
  234. for i, v := range gids {
  235. a[i] = _Gid_t(v)
  236. }
  237. return setgroups(len(a), &a[0])
  238. }
  239. type WaitStatus uint32
  240. // Wait status is 7 bits at bottom, either 0 (exited),
  241. // 0x7F (stopped), or a signal number that caused an exit.
  242. // The 0x80 bit is whether there was a core dump.
  243. // An extra number (exit code, signal causing a stop)
  244. // is in the high bits. At least that's the idea.
  245. // There are various irregularities. For example, the
  246. // "continued" status is 0xFFFF, distinguishing itself
  247. // from stopped via the core dump bit.
  248. const (
  249. mask = 0x7F
  250. core = 0x80
  251. exited = 0x00
  252. stopped = 0x7F
  253. shift = 8
  254. )
  255. func (w WaitStatus) Exited() bool { return w&mask == exited }
  256. func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
  257. func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
  258. func (w WaitStatus) Continued() bool { return w == 0xFFFF }
  259. func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
  260. func (w WaitStatus) ExitStatus() int {
  261. if !w.Exited() {
  262. return -1
  263. }
  264. return int(w>>shift) & 0xFF
  265. }
  266. func (w WaitStatus) Signal() syscall.Signal {
  267. if !w.Signaled() {
  268. return -1
  269. }
  270. return syscall.Signal(w & mask)
  271. }
  272. func (w WaitStatus) StopSignal() syscall.Signal {
  273. if !w.Stopped() {
  274. return -1
  275. }
  276. return syscall.Signal(w>>shift) & 0xFF
  277. }
  278. func (w WaitStatus) TrapCause() int {
  279. if w.StopSignal() != SIGTRAP {
  280. return -1
  281. }
  282. return int(w>>shift) >> 8
  283. }
  284. //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
  285. func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
  286. var status _C_int
  287. wpid, err = wait4(pid, &status, options, rusage)
  288. if wstatus != nil {
  289. *wstatus = WaitStatus(status)
  290. }
  291. return
  292. }
  293. func Mkfifo(path string, mode uint32) error {
  294. return Mknod(path, mode|S_IFIFO, 0)
  295. }
  296. func Mkfifoat(dirfd int, path string, mode uint32) error {
  297. return Mknodat(dirfd, path, mode|S_IFIFO, 0)
  298. }
  299. func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
  300. if sa.Port < 0 || sa.Port > 0xFFFF {
  301. return nil, 0, EINVAL
  302. }
  303. sa.raw.Family = AF_INET
  304. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  305. p[0] = byte(sa.Port >> 8)
  306. p[1] = byte(sa.Port)
  307. for i := 0; i < len(sa.Addr); i++ {
  308. sa.raw.Addr[i] = sa.Addr[i]
  309. }
  310. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
  311. }
  312. func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
  313. if sa.Port < 0 || sa.Port > 0xFFFF {
  314. return nil, 0, EINVAL
  315. }
  316. sa.raw.Family = AF_INET6
  317. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  318. p[0] = byte(sa.Port >> 8)
  319. p[1] = byte(sa.Port)
  320. sa.raw.Scope_id = sa.ZoneId
  321. for i := 0; i < len(sa.Addr); i++ {
  322. sa.raw.Addr[i] = sa.Addr[i]
  323. }
  324. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
  325. }
  326. func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
  327. name := sa.Name
  328. n := len(name)
  329. if n >= len(sa.raw.Path) {
  330. return nil, 0, EINVAL
  331. }
  332. sa.raw.Family = AF_UNIX
  333. for i := 0; i < n; i++ {
  334. sa.raw.Path[i] = int8(name[i])
  335. }
  336. // length is family (uint16), name, NUL.
  337. sl := _Socklen(2)
  338. if n > 0 {
  339. sl += _Socklen(n) + 1
  340. }
  341. if sa.raw.Path[0] == '@' {
  342. sa.raw.Path[0] = 0
  343. // Don't count trailing NUL for abstract address.
  344. sl--
  345. }
  346. return unsafe.Pointer(&sa.raw), sl, nil
  347. }
  348. // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
  349. type SockaddrLinklayer struct {
  350. Protocol uint16
  351. Ifindex int
  352. Hatype uint16
  353. Pkttype uint8
  354. Halen uint8
  355. Addr [8]byte
  356. raw RawSockaddrLinklayer
  357. }
  358. func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
  359. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  360. return nil, 0, EINVAL
  361. }
  362. sa.raw.Family = AF_PACKET
  363. sa.raw.Protocol = sa.Protocol
  364. sa.raw.Ifindex = int32(sa.Ifindex)
  365. sa.raw.Hatype = sa.Hatype
  366. sa.raw.Pkttype = sa.Pkttype
  367. sa.raw.Halen = sa.Halen
  368. for i := 0; i < len(sa.Addr); i++ {
  369. sa.raw.Addr[i] = sa.Addr[i]
  370. }
  371. return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
  372. }
  373. // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
  374. type SockaddrNetlink struct {
  375. Family uint16
  376. Pad uint16
  377. Pid uint32
  378. Groups uint32
  379. raw RawSockaddrNetlink
  380. }
  381. func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
  382. sa.raw.Family = AF_NETLINK
  383. sa.raw.Pad = sa.Pad
  384. sa.raw.Pid = sa.Pid
  385. sa.raw.Groups = sa.Groups
  386. return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
  387. }
  388. // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
  389. // using the HCI protocol.
  390. type SockaddrHCI struct {
  391. Dev uint16
  392. Channel uint16
  393. raw RawSockaddrHCI
  394. }
  395. func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
  396. sa.raw.Family = AF_BLUETOOTH
  397. sa.raw.Dev = sa.Dev
  398. sa.raw.Channel = sa.Channel
  399. return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
  400. }
  401. // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
  402. // using the L2CAP protocol.
  403. type SockaddrL2 struct {
  404. PSM uint16
  405. CID uint16
  406. Addr [6]uint8
  407. AddrType uint8
  408. raw RawSockaddrL2
  409. }
  410. func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
  411. sa.raw.Family = AF_BLUETOOTH
  412. psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
  413. psm[0] = byte(sa.PSM)
  414. psm[1] = byte(sa.PSM >> 8)
  415. for i := 0; i < len(sa.Addr); i++ {
  416. sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
  417. }
  418. cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
  419. cid[0] = byte(sa.CID)
  420. cid[1] = byte(sa.CID >> 8)
  421. sa.raw.Bdaddr_type = sa.AddrType
  422. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
  423. }
  424. // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
  425. // using the RFCOMM protocol.
  426. //
  427. // Server example:
  428. //
  429. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  430. // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
  431. // Channel: 1,
  432. // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
  433. // })
  434. // _ = Listen(fd, 1)
  435. // nfd, sa, _ := Accept(fd)
  436. // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
  437. // Read(nfd, buf)
  438. //
  439. // Client example:
  440. //
  441. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  442. // _ = Connect(fd, &SockaddrRFCOMM{
  443. // Channel: 1,
  444. // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
  445. // })
  446. // Write(fd, []byte(`hello`))
  447. type SockaddrRFCOMM struct {
  448. // Addr represents a bluetooth address, byte ordering is little-endian.
  449. Addr [6]uint8
  450. // Channel is a designated bluetooth channel, only 1-30 are available for use.
  451. // Since Linux 2.6.7 and further zero value is the first available channel.
  452. Channel uint8
  453. raw RawSockaddrRFCOMM
  454. }
  455. func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  456. sa.raw.Family = AF_BLUETOOTH
  457. sa.raw.Channel = sa.Channel
  458. sa.raw.Bdaddr = sa.Addr
  459. return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
  460. }
  461. // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
  462. // The RxID and TxID fields are used for transport protocol addressing in
  463. // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
  464. // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
  465. //
  466. // The SockaddrCAN struct must be bound to the socket file descriptor
  467. // using Bind before the CAN socket can be used.
  468. //
  469. // // Read one raw CAN frame
  470. // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
  471. // addr := &SockaddrCAN{Ifindex: index}
  472. // Bind(fd, addr)
  473. // frame := make([]byte, 16)
  474. // Read(fd, frame)
  475. //
  476. // The full SocketCAN documentation can be found in the linux kernel
  477. // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
  478. type SockaddrCAN struct {
  479. Ifindex int
  480. RxID uint32
  481. TxID uint32
  482. raw RawSockaddrCAN
  483. }
  484. func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
  485. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  486. return nil, 0, EINVAL
  487. }
  488. sa.raw.Family = AF_CAN
  489. sa.raw.Ifindex = int32(sa.Ifindex)
  490. rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
  491. for i := 0; i < 4; i++ {
  492. sa.raw.Addr[i] = rx[i]
  493. }
  494. tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
  495. for i := 0; i < 4; i++ {
  496. sa.raw.Addr[i+4] = tx[i]
  497. }
  498. return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
  499. }
  500. // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
  501. // SockaddrALG enables userspace access to the Linux kernel's cryptography
  502. // subsystem. The Type and Name fields specify which type of hash or cipher
  503. // should be used with a given socket.
  504. //
  505. // To create a file descriptor that provides access to a hash or cipher, both
  506. // Bind and Accept must be used. Once the setup process is complete, input
  507. // data can be written to the socket, processed by the kernel, and then read
  508. // back as hash output or ciphertext.
  509. //
  510. // Here is an example of using an AF_ALG socket with SHA1 hashing.
  511. // The initial socket setup process is as follows:
  512. //
  513. // // Open a socket to perform SHA1 hashing.
  514. // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
  515. // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
  516. // unix.Bind(fd, addr)
  517. // // Note: unix.Accept does not work at this time; must invoke accept()
  518. // // manually using unix.Syscall.
  519. // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
  520. //
  521. // Once a file descriptor has been returned from Accept, it may be used to
  522. // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
  523. // may be re-used repeatedly with subsequent Write and Read operations.
  524. //
  525. // When hashing a small byte slice or string, a single Write and Read may
  526. // be used:
  527. //
  528. // // Assume hashfd is already configured using the setup process.
  529. // hash := os.NewFile(hashfd, "sha1")
  530. // // Hash an input string and read the results. Each Write discards
  531. // // previous hash state. Read always reads the current state.
  532. // b := make([]byte, 20)
  533. // for i := 0; i < 2; i++ {
  534. // io.WriteString(hash, "Hello, world.")
  535. // hash.Read(b)
  536. // fmt.Println(hex.EncodeToString(b))
  537. // }
  538. // // Output:
  539. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  540. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  541. //
  542. // For hashing larger byte slices, or byte streams such as those read from
  543. // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
  544. // the hash digest instead of creating a new one for a given chunk and finalizing it.
  545. //
  546. // // Assume hashfd and addr are already configured using the setup process.
  547. // hash := os.NewFile(hashfd, "sha1")
  548. // // Hash the contents of a file.
  549. // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
  550. // b := make([]byte, 4096)
  551. // for {
  552. // n, err := f.Read(b)
  553. // if err == io.EOF {
  554. // break
  555. // }
  556. // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
  557. // }
  558. // hash.Read(b)
  559. // fmt.Println(hex.EncodeToString(b))
  560. // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
  561. //
  562. // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
  563. type SockaddrALG struct {
  564. Type string
  565. Name string
  566. Feature uint32
  567. Mask uint32
  568. raw RawSockaddrALG
  569. }
  570. func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
  571. // Leave room for NUL byte terminator.
  572. if len(sa.Type) > 13 {
  573. return nil, 0, EINVAL
  574. }
  575. if len(sa.Name) > 63 {
  576. return nil, 0, EINVAL
  577. }
  578. sa.raw.Family = AF_ALG
  579. sa.raw.Feat = sa.Feature
  580. sa.raw.Mask = sa.Mask
  581. typ, err := ByteSliceFromString(sa.Type)
  582. if err != nil {
  583. return nil, 0, err
  584. }
  585. name, err := ByteSliceFromString(sa.Name)
  586. if err != nil {
  587. return nil, 0, err
  588. }
  589. copy(sa.raw.Type[:], typ)
  590. copy(sa.raw.Name[:], name)
  591. return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
  592. }
  593. // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
  594. // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
  595. // bidirectional communication between a hypervisor and its guest virtual
  596. // machines.
  597. type SockaddrVM struct {
  598. // CID and Port specify a context ID and port address for a VM socket.
  599. // Guests have a unique CID, and hosts may have a well-known CID of:
  600. // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
  601. // - VMADDR_CID_HOST: refers to other processes on the host.
  602. CID uint32
  603. Port uint32
  604. raw RawSockaddrVM
  605. }
  606. func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  607. sa.raw.Family = AF_VSOCK
  608. sa.raw.Port = sa.Port
  609. sa.raw.Cid = sa.CID
  610. return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
  611. }
  612. type SockaddrXDP struct {
  613. Flags uint16
  614. Ifindex uint32
  615. QueueID uint32
  616. SharedUmemFD uint32
  617. raw RawSockaddrXDP
  618. }
  619. func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
  620. sa.raw.Family = AF_XDP
  621. sa.raw.Flags = sa.Flags
  622. sa.raw.Ifindex = sa.Ifindex
  623. sa.raw.Queue_id = sa.QueueID
  624. sa.raw.Shared_umem_fd = sa.SharedUmemFD
  625. return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
  626. }
  627. // This constant mirrors the #define of PX_PROTO_OE in
  628. // linux/if_pppox.h. We're defining this by hand here instead of
  629. // autogenerating through mkerrors.sh because including
  630. // linux/if_pppox.h causes some declaration conflicts with other
  631. // includes (linux/if_pppox.h includes linux/in.h, which conflicts
  632. // with netinet/in.h). Given that we only need a single zero constant
  633. // out of that file, it's cleaner to just define it by hand here.
  634. const px_proto_oe = 0
  635. type SockaddrPPPoE struct {
  636. SID uint16
  637. Remote net.HardwareAddr
  638. Dev string
  639. raw RawSockaddrPPPoX
  640. }
  641. func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
  642. if len(sa.Remote) != 6 {
  643. return nil, 0, EINVAL
  644. }
  645. if len(sa.Dev) > IFNAMSIZ-1 {
  646. return nil, 0, EINVAL
  647. }
  648. *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
  649. // This next field is in host-endian byte order. We can't use the
  650. // same unsafe pointer cast as above, because this value is not
  651. // 32-bit aligned and some architectures don't allow unaligned
  652. // access.
  653. //
  654. // However, the value of px_proto_oe is 0, so we can use
  655. // encoding/binary helpers to write the bytes without worrying
  656. // about the ordering.
  657. binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
  658. // This field is deliberately big-endian, unlike the previous
  659. // one. The kernel expects SID to be in network byte order.
  660. binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
  661. copy(sa.raw[8:14], sa.Remote)
  662. for i := 14; i < 14+IFNAMSIZ; i++ {
  663. sa.raw[i] = 0
  664. }
  665. copy(sa.raw[14:], sa.Dev)
  666. return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
  667. }
  668. func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
  669. switch rsa.Addr.Family {
  670. case AF_NETLINK:
  671. pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
  672. sa := new(SockaddrNetlink)
  673. sa.Family = pp.Family
  674. sa.Pad = pp.Pad
  675. sa.Pid = pp.Pid
  676. sa.Groups = pp.Groups
  677. return sa, nil
  678. case AF_PACKET:
  679. pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
  680. sa := new(SockaddrLinklayer)
  681. sa.Protocol = pp.Protocol
  682. sa.Ifindex = int(pp.Ifindex)
  683. sa.Hatype = pp.Hatype
  684. sa.Pkttype = pp.Pkttype
  685. sa.Halen = pp.Halen
  686. for i := 0; i < len(sa.Addr); i++ {
  687. sa.Addr[i] = pp.Addr[i]
  688. }
  689. return sa, nil
  690. case AF_UNIX:
  691. pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
  692. sa := new(SockaddrUnix)
  693. if pp.Path[0] == 0 {
  694. // "Abstract" Unix domain socket.
  695. // Rewrite leading NUL as @ for textual display.
  696. // (This is the standard convention.)
  697. // Not friendly to overwrite in place,
  698. // but the callers below don't care.
  699. pp.Path[0] = '@'
  700. }
  701. // Assume path ends at NUL.
  702. // This is not technically the Linux semantics for
  703. // abstract Unix domain sockets--they are supposed
  704. // to be uninterpreted fixed-size binary blobs--but
  705. // everyone uses this convention.
  706. n := 0
  707. for n < len(pp.Path) && pp.Path[n] != 0 {
  708. n++
  709. }
  710. bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
  711. sa.Name = string(bytes)
  712. return sa, nil
  713. case AF_INET:
  714. pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
  715. sa := new(SockaddrInet4)
  716. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  717. sa.Port = int(p[0])<<8 + int(p[1])
  718. for i := 0; i < len(sa.Addr); i++ {
  719. sa.Addr[i] = pp.Addr[i]
  720. }
  721. return sa, nil
  722. case AF_INET6:
  723. pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
  724. sa := new(SockaddrInet6)
  725. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  726. sa.Port = int(p[0])<<8 + int(p[1])
  727. sa.ZoneId = pp.Scope_id
  728. for i := 0; i < len(sa.Addr); i++ {
  729. sa.Addr[i] = pp.Addr[i]
  730. }
  731. return sa, nil
  732. case AF_VSOCK:
  733. pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
  734. sa := &SockaddrVM{
  735. CID: pp.Cid,
  736. Port: pp.Port,
  737. }
  738. return sa, nil
  739. case AF_BLUETOOTH:
  740. proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
  741. if err != nil {
  742. return nil, err
  743. }
  744. // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
  745. switch proto {
  746. case BTPROTO_L2CAP:
  747. pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
  748. sa := &SockaddrL2{
  749. PSM: pp.Psm,
  750. CID: pp.Cid,
  751. Addr: pp.Bdaddr,
  752. AddrType: pp.Bdaddr_type,
  753. }
  754. return sa, nil
  755. case BTPROTO_RFCOMM:
  756. pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
  757. sa := &SockaddrRFCOMM{
  758. Channel: pp.Channel,
  759. Addr: pp.Bdaddr,
  760. }
  761. return sa, nil
  762. }
  763. case AF_XDP:
  764. pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
  765. sa := &SockaddrXDP{
  766. Flags: pp.Flags,
  767. Ifindex: pp.Ifindex,
  768. QueueID: pp.Queue_id,
  769. SharedUmemFD: pp.Shared_umem_fd,
  770. }
  771. return sa, nil
  772. case AF_PPPOX:
  773. pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
  774. if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
  775. return nil, EINVAL
  776. }
  777. sa := &SockaddrPPPoE{
  778. SID: binary.BigEndian.Uint16(pp[6:8]),
  779. Remote: net.HardwareAddr(pp[8:14]),
  780. }
  781. for i := 14; i < 14+IFNAMSIZ; i++ {
  782. if pp[i] == 0 {
  783. sa.Dev = string(pp[14:i])
  784. break
  785. }
  786. }
  787. return sa, nil
  788. }
  789. return nil, EAFNOSUPPORT
  790. }
  791. func Accept(fd int) (nfd int, sa Sockaddr, err error) {
  792. var rsa RawSockaddrAny
  793. var len _Socklen = SizeofSockaddrAny
  794. nfd, err = accept(fd, &rsa, &len)
  795. if err != nil {
  796. return
  797. }
  798. sa, err = anyToSockaddr(fd, &rsa)
  799. if err != nil {
  800. Close(nfd)
  801. nfd = 0
  802. }
  803. return
  804. }
  805. func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
  806. var rsa RawSockaddrAny
  807. var len _Socklen = SizeofSockaddrAny
  808. nfd, err = accept4(fd, &rsa, &len, flags)
  809. if err != nil {
  810. return
  811. }
  812. if len > SizeofSockaddrAny {
  813. panic("RawSockaddrAny too small")
  814. }
  815. sa, err = anyToSockaddr(fd, &rsa)
  816. if err != nil {
  817. Close(nfd)
  818. nfd = 0
  819. }
  820. return
  821. }
  822. func Getsockname(fd int) (sa Sockaddr, err error) {
  823. var rsa RawSockaddrAny
  824. var len _Socklen = SizeofSockaddrAny
  825. if err = getsockname(fd, &rsa, &len); err != nil {
  826. return
  827. }
  828. return anyToSockaddr(fd, &rsa)
  829. }
  830. func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
  831. var value IPMreqn
  832. vallen := _Socklen(SizeofIPMreqn)
  833. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  834. return &value, err
  835. }
  836. func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
  837. var value Ucred
  838. vallen := _Socklen(SizeofUcred)
  839. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  840. return &value, err
  841. }
  842. func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
  843. var value TCPInfo
  844. vallen := _Socklen(SizeofTCPInfo)
  845. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  846. return &value, err
  847. }
  848. // GetsockoptString returns the string value of the socket option opt for the
  849. // socket associated with fd at the given socket level.
  850. func GetsockoptString(fd, level, opt int) (string, error) {
  851. buf := make([]byte, 256)
  852. vallen := _Socklen(len(buf))
  853. err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  854. if err != nil {
  855. if err == ERANGE {
  856. buf = make([]byte, vallen)
  857. err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  858. }
  859. if err != nil {
  860. return "", err
  861. }
  862. }
  863. return string(buf[:vallen-1]), nil
  864. }
  865. func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
  866. return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  867. }
  868. // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
  869. // KeyctlInt calls keyctl commands in which each argument is an int.
  870. // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
  871. // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
  872. // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
  873. // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
  874. //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
  875. // KeyctlBuffer calls keyctl commands in which the third and fourth
  876. // arguments are a buffer and its length, respectively.
  877. // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
  878. //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
  879. // KeyctlString calls keyctl commands which return a string.
  880. // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  881. func KeyctlString(cmd int, id int) (string, error) {
  882. // We must loop as the string data may change in between the syscalls.
  883. // We could allocate a large buffer here to reduce the chance that the
  884. // syscall needs to be called twice; however, this is unnecessary as
  885. // the performance loss is negligible.
  886. var buffer []byte
  887. for {
  888. // Try to fill the buffer with data
  889. length, err := KeyctlBuffer(cmd, id, buffer, 0)
  890. if err != nil {
  891. return "", err
  892. }
  893. // Check if the data was written
  894. if length <= len(buffer) {
  895. // Exclude the null terminator
  896. return string(buffer[:length-1]), nil
  897. }
  898. // Make a bigger buffer if needed
  899. buffer = make([]byte, length)
  900. }
  901. }
  902. // Keyctl commands with special signatures.
  903. // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  904. // See the full documentation at:
  905. // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  906. func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  907. createInt := 0
  908. if create {
  909. createInt = 1
  910. }
  911. return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  912. }
  913. // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  914. // key handle permission mask as described in the "keyctl setperm" section of
  915. // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  916. // See the full documentation at:
  917. // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  918. func KeyctlSetperm(id int, perm uint32) error {
  919. _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  920. return err
  921. }
  922. //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  923. // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  924. // See the full documentation at:
  925. // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  926. func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  927. return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  928. }
  929. //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  930. // KeyctlSearch implements the KEYCTL_SEARCH command.
  931. // See the full documentation at:
  932. // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  933. func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  934. return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  935. }
  936. //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  937. // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  938. // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  939. // of Iovec (each of which represents a buffer) instead of a single buffer.
  940. // See the full documentation at:
  941. // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  942. func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  943. return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  944. }
  945. //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  946. // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  947. // computes a Diffie-Hellman shared secret based on the provide params. The
  948. // secret is written to the provided buffer and the returned size is the number
  949. // of bytes written (returning an error if there is insufficient space in the
  950. // buffer). If a nil buffer is passed in, this function returns the minimum
  951. // buffer length needed to store the appropriate data. Note that this differs
  952. // from KEYCTL_READ's behavior which always returns the requested payload size.
  953. // See the full documentation at:
  954. // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  955. func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  956. return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  957. }
  958. func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  959. var msg Msghdr
  960. var rsa RawSockaddrAny
  961. msg.Name = (*byte)(unsafe.Pointer(&rsa))
  962. msg.Namelen = uint32(SizeofSockaddrAny)
  963. var iov Iovec
  964. if len(p) > 0 {
  965. iov.Base = &p[0]
  966. iov.SetLen(len(p))
  967. }
  968. var dummy byte
  969. if len(oob) > 0 {
  970. if len(p) == 0 {
  971. var sockType int
  972. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  973. if err != nil {
  974. return
  975. }
  976. // receive at least one normal byte
  977. if sockType != SOCK_DGRAM {
  978. iov.Base = &dummy
  979. iov.SetLen(1)
  980. }
  981. }
  982. msg.Control = &oob[0]
  983. msg.SetControllen(len(oob))
  984. }
  985. msg.Iov = &iov
  986. msg.Iovlen = 1
  987. if n, err = recvmsg(fd, &msg, flags); err != nil {
  988. return
  989. }
  990. oobn = int(msg.Controllen)
  991. recvflags = int(msg.Flags)
  992. // source address is only specified if the socket is unconnected
  993. if rsa.Addr.Family != AF_UNSPEC {
  994. from, err = anyToSockaddr(fd, &rsa)
  995. }
  996. return
  997. }
  998. func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  999. _, err = SendmsgN(fd, p, oob, to, flags)
  1000. return
  1001. }
  1002. func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1003. var ptr unsafe.Pointer
  1004. var salen _Socklen
  1005. if to != nil {
  1006. var err error
  1007. ptr, salen, err = to.sockaddr()
  1008. if err != nil {
  1009. return 0, err
  1010. }
  1011. }
  1012. var msg Msghdr
  1013. msg.Name = (*byte)(ptr)
  1014. msg.Namelen = uint32(salen)
  1015. var iov Iovec
  1016. if len(p) > 0 {
  1017. iov.Base = &p[0]
  1018. iov.SetLen(len(p))
  1019. }
  1020. var dummy byte
  1021. if len(oob) > 0 {
  1022. if len(p) == 0 {
  1023. var sockType int
  1024. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1025. if err != nil {
  1026. return 0, err
  1027. }
  1028. // send at least one normal byte
  1029. if sockType != SOCK_DGRAM {
  1030. iov.Base = &dummy
  1031. iov.SetLen(1)
  1032. }
  1033. }
  1034. msg.Control = &oob[0]
  1035. msg.SetControllen(len(oob))
  1036. }
  1037. msg.Iov = &iov
  1038. msg.Iovlen = 1
  1039. if n, err = sendmsg(fd, &msg, flags); err != nil {
  1040. return 0, err
  1041. }
  1042. if len(oob) > 0 && len(p) == 0 {
  1043. n = 0
  1044. }
  1045. return n, nil
  1046. }
  1047. // BindToDevice binds the socket associated with fd to device.
  1048. func BindToDevice(fd int, device string) (err error) {
  1049. return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1050. }
  1051. //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1052. func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1053. // The peek requests are machine-size oriented, so we wrap it
  1054. // to retrieve arbitrary-length data.
  1055. // The ptrace syscall differs from glibc's ptrace.
  1056. // Peeks returns the word in *data, not as the return value.
  1057. var buf [SizeofPtr]byte
  1058. // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1059. // access (PEEKUSER warns that it might), but if we don't
  1060. // align our reads, we might straddle an unmapped page
  1061. // boundary and not get the bytes leading up to the page
  1062. // boundary.
  1063. n := 0
  1064. if addr%SizeofPtr != 0 {
  1065. err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1066. if err != nil {
  1067. return 0, err
  1068. }
  1069. n += copy(out, buf[addr%SizeofPtr:])
  1070. out = out[n:]
  1071. }
  1072. // Remainder.
  1073. for len(out) > 0 {
  1074. // We use an internal buffer to guarantee alignment.
  1075. // It's not documented if this is necessary, but we're paranoid.
  1076. err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1077. if err != nil {
  1078. return n, err
  1079. }
  1080. copied := copy(out, buf[0:])
  1081. n += copied
  1082. out = out[copied:]
  1083. }
  1084. return n, nil
  1085. }
  1086. func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1087. return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1088. }
  1089. func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1090. return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1091. }
  1092. func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1093. return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1094. }
  1095. func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1096. // As for ptracePeek, we need to align our accesses to deal
  1097. // with the possibility of straddling an invalid page.
  1098. // Leading edge.
  1099. n := 0
  1100. if addr%SizeofPtr != 0 {
  1101. var buf [SizeofPtr]byte
  1102. err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1103. if err != nil {
  1104. return 0, err
  1105. }
  1106. n += copy(buf[addr%SizeofPtr:], data)
  1107. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1108. err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1109. if err != nil {
  1110. return 0, err
  1111. }
  1112. data = data[n:]
  1113. }
  1114. // Interior.
  1115. for len(data) > SizeofPtr {
  1116. word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1117. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1118. if err != nil {
  1119. return n, err
  1120. }
  1121. n += SizeofPtr
  1122. data = data[SizeofPtr:]
  1123. }
  1124. // Trailing edge.
  1125. if len(data) > 0 {
  1126. var buf [SizeofPtr]byte
  1127. err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1128. if err != nil {
  1129. return n, err
  1130. }
  1131. copy(buf[0:], data)
  1132. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1133. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1134. if err != nil {
  1135. return n, err
  1136. }
  1137. n += len(data)
  1138. }
  1139. return n, nil
  1140. }
  1141. func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1142. return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1143. }
  1144. func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1145. return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1146. }
  1147. func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1148. return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1149. }
  1150. func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1151. return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1152. }
  1153. func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1154. return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1155. }
  1156. func PtraceSetOptions(pid int, options int) (err error) {
  1157. return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1158. }
  1159. func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1160. var data _C_long
  1161. err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1162. msg = uint(data)
  1163. return
  1164. }
  1165. func PtraceCont(pid int, signal int) (err error) {
  1166. return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1167. }
  1168. func PtraceSyscall(pid int, signal int) (err error) {
  1169. return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1170. }
  1171. func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1172. func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1173. func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1174. //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1175. func Reboot(cmd int) (err error) {
  1176. return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1177. }
  1178. func ReadDirent(fd int, buf []byte) (n int, err error) {
  1179. return Getdents(fd, buf)
  1180. }
  1181. //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1182. func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1183. // Certain file systems get rather angry and EINVAL if you give
  1184. // them an empty string of data, rather than NULL.
  1185. if data == "" {
  1186. return mount(source, target, fstype, flags, nil)
  1187. }
  1188. datap, err := BytePtrFromString(data)
  1189. if err != nil {
  1190. return err
  1191. }
  1192. return mount(source, target, fstype, flags, datap)
  1193. }
  1194. func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
  1195. if raceenabled {
  1196. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1197. }
  1198. return sendfile(outfd, infd, offset, count)
  1199. }
  1200. // Sendto
  1201. // Recvfrom
  1202. // Socketpair
  1203. /*
  1204. * Direct access
  1205. */
  1206. //sys Acct(path string) (err error)
  1207. //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1208. //sys Adjtimex(buf *Timex) (state int, err error)
  1209. //sys Chdir(path string) (err error)
  1210. //sys Chroot(path string) (err error)
  1211. //sys ClockGetres(clockid int32, res *Timespec) (err error)
  1212. //sys ClockGettime(clockid int32, time *Timespec) (err error)
  1213. //sys Close(fd int) (err error)
  1214. //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1215. //sys DeleteModule(name string, flags int) (err error)
  1216. //sys Dup(oldfd int) (fd int, err error)
  1217. //sys Dup3(oldfd int, newfd int, flags int) (err error)
  1218. //sysnb EpollCreate1(flag int) (fd int, err error)
  1219. //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1220. //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1221. //sys Exit(code int) = SYS_EXIT_GROUP
  1222. //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1223. //sys Fchdir(fd int) (err error)
  1224. //sys Fchmod(fd int, mode uint32) (err error)
  1225. //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1226. //sys fcntl(fd int, cmd int, arg int) (val int, err error)
  1227. //sys Fdatasync(fd int) (err error)
  1228. //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1229. //sys FinitModule(fd int, params string, flags int) (err error)
  1230. //sys Flistxattr(fd int, dest []byte) (sz int, err error)
  1231. //sys Flock(fd int, how int) (err error)
  1232. //sys Fremovexattr(fd int, attr string) (err error)
  1233. //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1234. //sys Fsync(fd int) (err error)
  1235. //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1236. //sysnb Getpgid(pid int) (pgid int, err error)
  1237. func Getpgrp() (pid int) {
  1238. pid, _ = Getpgid(0)
  1239. return
  1240. }
  1241. //sysnb Getpid() (pid int)
  1242. //sysnb Getppid() (ppid int)
  1243. //sys Getpriority(which int, who int) (prio int, err error)
  1244. //sys Getrandom(buf []byte, flags int) (n int, err error)
  1245. //sysnb Getrusage(who int, rusage *Rusage) (err error)
  1246. //sysnb Getsid(pid int) (sid int, err error)
  1247. //sysnb Gettid() (tid int)
  1248. //sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1249. //sys InitModule(moduleImage []byte, params string) (err error)
  1250. //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1251. //sysnb InotifyInit1(flags int) (fd int, err error)
  1252. //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1253. //sysnb Kill(pid int, sig syscall.Signal) (err error)
  1254. //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1255. //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1256. //sys Listxattr(path string, dest []byte) (sz int, err error)
  1257. //sys Llistxattr(path string, dest []byte) (sz int, err error)
  1258. //sys Lremovexattr(path string, attr string) (err error)
  1259. //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1260. //sys MemfdCreate(name string, flags int) (fd int, err error)
  1261. //sys Mkdirat(dirfd int, path string, mode uint32) (err error)
  1262. //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1263. //sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1264. //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1265. //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1266. //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1267. //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1268. //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1269. //sys read(fd int, p []byte) (n int, err error)
  1270. //sys Removexattr(path string, attr string) (err error)
  1271. //sys Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
  1272. //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1273. //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1274. //sys Setdomainname(p []byte) (err error)
  1275. //sys Sethostname(p []byte) (err error)
  1276. //sysnb Setpgid(pid int, pgid int) (err error)
  1277. //sysnb Setsid() (pid int, err error)
  1278. //sysnb Settimeofday(tv *Timeval) (err error)
  1279. //sys Setns(fd int, nstype int) (err error)
  1280. // issue 1435.
  1281. // On linux Setuid and Setgid only affects the current thread, not the process.
  1282. // This does not match what most callers expect so we must return an error
  1283. // here rather than letting the caller think that the call succeeded.
  1284. func Setuid(uid int) (err error) {
  1285. return EOPNOTSUPP
  1286. }
  1287. func Setgid(uid int) (err error) {
  1288. return EOPNOTSUPP
  1289. }
  1290. //sys Setpriority(which int, who int, prio int) (err error)
  1291. //sys Setxattr(path string, attr string, data []byte, flags int) (err error)
  1292. //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1293. //sys Sync()
  1294. //sys Syncfs(fd int) (err error)
  1295. //sysnb Sysinfo(info *Sysinfo_t) (err error)
  1296. //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1297. //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1298. //sysnb Times(tms *Tms) (ticks uintptr, err error)
  1299. //sysnb Umask(mask int) (oldmask int)
  1300. //sysnb Uname(buf *Utsname) (err error)
  1301. //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1302. //sys Unshare(flags int) (err error)
  1303. //sys write(fd int, p []byte) (n int, err error)
  1304. //sys exitThread(code int) (err error) = SYS_EXIT
  1305. //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1306. //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1307. // mmap varies by architecture; see syscall_linux_*.go.
  1308. //sys munmap(addr uintptr, length uintptr) (err error)
  1309. var mapper = &mmapper{
  1310. active: make(map[*byte][]byte),
  1311. mmap: mmap,
  1312. munmap: munmap,
  1313. }
  1314. func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1315. return mapper.Mmap(fd, offset, length, prot, flags)
  1316. }
  1317. func Munmap(b []byte) (err error) {
  1318. return mapper.Munmap(b)
  1319. }
  1320. //sys Madvise(b []byte, advice int) (err error)
  1321. //sys Mprotect(b []byte, prot int) (err error)
  1322. //sys Mlock(b []byte) (err error)
  1323. //sys Mlockall(flags int) (err error)
  1324. //sys Msync(b []byte, flags int) (err error)
  1325. //sys Munlock(b []byte) (err error)
  1326. //sys Munlockall() (err error)
  1327. // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1328. // using the specified flags.
  1329. func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1330. var p unsafe.Pointer
  1331. if len(iovs) > 0 {
  1332. p = unsafe.Pointer(&iovs[0])
  1333. }
  1334. n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
  1335. if errno != 0 {
  1336. return 0, syscall.Errno(errno)
  1337. }
  1338. return int(n), nil
  1339. }
  1340. //sys faccessat(dirfd int, path string, mode uint32) (err error)
  1341. func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1342. if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1343. return EINVAL
  1344. }
  1345. // The Linux kernel faccessat system call does not take any flags.
  1346. // The glibc faccessat implements the flags itself; see
  1347. // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  1348. // Because people naturally expect syscall.Faccessat to act
  1349. // like C faccessat, we do the same.
  1350. if flags == 0 {
  1351. return faccessat(dirfd, path, mode)
  1352. }
  1353. var st Stat_t
  1354. if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  1355. return err
  1356. }
  1357. mode &= 7
  1358. if mode == 0 {
  1359. return nil
  1360. }
  1361. var uid int
  1362. if flags&AT_EACCESS != 0 {
  1363. uid = Geteuid()
  1364. } else {
  1365. uid = Getuid()
  1366. }
  1367. if uid == 0 {
  1368. if mode&1 == 0 {
  1369. // Root can read and write any file.
  1370. return nil
  1371. }
  1372. if st.Mode&0111 != 0 {
  1373. // Root can execute any file that anybody can execute.
  1374. return nil
  1375. }
  1376. return EACCES
  1377. }
  1378. var fmode uint32
  1379. if uint32(uid) == st.Uid {
  1380. fmode = (st.Mode >> 6) & 7
  1381. } else {
  1382. var gid int
  1383. if flags&AT_EACCESS != 0 {
  1384. gid = Getegid()
  1385. } else {
  1386. gid = Getgid()
  1387. }
  1388. if uint32(gid) == st.Gid {
  1389. fmode = (st.Mode >> 3) & 7
  1390. } else {
  1391. fmode = st.Mode & 7
  1392. }
  1393. }
  1394. if fmode&mode == mode {
  1395. return nil
  1396. }
  1397. return EACCES
  1398. }
  1399. /*
  1400. * Unimplemented
  1401. */
  1402. // AfsSyscall
  1403. // Alarm
  1404. // ArchPrctl
  1405. // Brk
  1406. // Capget
  1407. // Capset
  1408. // ClockNanosleep
  1409. // ClockSettime
  1410. // Clone
  1411. // EpollCtlOld
  1412. // EpollPwait
  1413. // EpollWaitOld
  1414. // Execve
  1415. // Fork
  1416. // Futex
  1417. // GetKernelSyms
  1418. // GetMempolicy
  1419. // GetRobustList
  1420. // GetThreadArea
  1421. // Getitimer
  1422. // Getpmsg
  1423. // IoCancel
  1424. // IoDestroy
  1425. // IoGetevents
  1426. // IoSetup
  1427. // IoSubmit
  1428. // IoprioGet
  1429. // IoprioSet
  1430. // KexecLoad
  1431. // LookupDcookie
  1432. // Mbind
  1433. // MigratePages
  1434. // Mincore
  1435. // ModifyLdt
  1436. // Mount
  1437. // MovePages
  1438. // MqGetsetattr
  1439. // MqNotify
  1440. // MqOpen
  1441. // MqTimedreceive
  1442. // MqTimedsend
  1443. // MqUnlink
  1444. // Mremap
  1445. // Msgctl
  1446. // Msgget
  1447. // Msgrcv
  1448. // Msgsnd
  1449. // Nfsservctl
  1450. // Personality
  1451. // Pselect6
  1452. // Ptrace
  1453. // Putpmsg
  1454. // Quotactl
  1455. // Readahead
  1456. // Readv
  1457. // RemapFilePages
  1458. // RestartSyscall
  1459. // RtSigaction
  1460. // RtSigpending
  1461. // RtSigprocmask
  1462. // RtSigqueueinfo
  1463. // RtSigreturn
  1464. // RtSigsuspend
  1465. // RtSigtimedwait
  1466. // SchedGetPriorityMax
  1467. // SchedGetPriorityMin
  1468. // SchedGetparam
  1469. // SchedGetscheduler
  1470. // SchedRrGetInterval
  1471. // SchedSetparam
  1472. // SchedYield
  1473. // Security
  1474. // Semctl
  1475. // Semget
  1476. // Semop
  1477. // Semtimedop
  1478. // SetMempolicy
  1479. // SetRobustList
  1480. // SetThreadArea
  1481. // SetTidAddress
  1482. // Shmat
  1483. // Shmctl
  1484. // Shmdt
  1485. // Shmget
  1486. // Sigaltstack
  1487. // Signalfd
  1488. // Swapoff
  1489. // Swapon
  1490. // Sysfs
  1491. // TimerCreate
  1492. // TimerDelete
  1493. // TimerGetoverrun
  1494. // TimerGettime
  1495. // TimerSettime
  1496. // Timerfd
  1497. // Tkill (obsolete)
  1498. // Tuxcall
  1499. // Umount2
  1500. // Uselib
  1501. // Utimensat
  1502. // Vfork
  1503. // Vhangup
  1504. // Vserver
  1505. // Waitid
  1506. // _Sysctl