|
@@ -15,7 +15,7 @@ from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
|
|
from open_webui.utils.misc import get_last_user_message
|
|
|
|
|
|
from open_webui.env import SRC_LOG_LEVELS, OFFLINE_MODE
|
|
|
-
|
|
|
+from open_webui.config import RAG_EMBEDDING_QUERY_PREFIX, RAG_EMBEDDING_PASSAGE_PREFIX
|
|
|
log = logging.getLogger(__name__)
|
|
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|
|
|
|
@@ -39,7 +39,7 @@ class VectorSearchRetriever(BaseRetriever):
|
|
|
) -> list[Document]:
|
|
|
result = VECTOR_DB_CLIENT.search(
|
|
|
collection_name=self.collection_name,
|
|
|
- vectors=[self.embedding_function(query)],
|
|
|
+ vectors=[self.embedding_function(query,RAG_EMBEDDING_QUERY_PREFIX)],
|
|
|
limit=self.top_k,
|
|
|
)
|
|
|
|
|
@@ -183,7 +183,7 @@ def query_collection(
|
|
|
) -> dict:
|
|
|
results = []
|
|
|
for query in queries:
|
|
|
- query_embedding = embedding_function(query)
|
|
|
+ query_embedding = embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
|
|
|
for collection_name in collection_names:
|
|
|
if collection_name:
|
|
|
try:
|
|
@@ -247,26 +247,27 @@ def get_embedding_function(
|
|
|
embedding_batch_size,
|
|
|
):
|
|
|
if embedding_engine == "":
|
|
|
- return lambda query: embedding_function.encode(query).tolist()
|
|
|
+ return lambda query, prefix: embedding_function.encode(query, prompt = prefix if prefix else None).tolist()
|
|
|
elif embedding_engine in ["ollama", "openai"]:
|
|
|
- func = lambda query: generate_embeddings(
|
|
|
+ func = lambda query, prefix: generate_embeddings(
|
|
|
engine=embedding_engine,
|
|
|
model=embedding_model,
|
|
|
text=query,
|
|
|
+ prefix=prefix,
|
|
|
url=url,
|
|
|
key=key,
|
|
|
)
|
|
|
|
|
|
- def generate_multiple(query, func):
|
|
|
+ def generate_multiple(query, prefix, func):
|
|
|
if isinstance(query, list):
|
|
|
embeddings = []
|
|
|
for i in range(0, len(query), embedding_batch_size):
|
|
|
- embeddings.extend(func(query[i : i + embedding_batch_size]))
|
|
|
+ embeddings.extend(func(query[i : i + embedding_batch_size], prefix))
|
|
|
return embeddings
|
|
|
else:
|
|
|
return func(query)
|
|
|
|
|
|
- return lambda query: generate_multiple(query, func)
|
|
|
+ return lambda query, prefix: generate_multiple(query, prefix, func)
|
|
|
|
|
|
|
|
|
def get_sources_from_files(
|
|
@@ -411,7 +412,7 @@ def get_model_path(model: str, update_model: bool = False):
|
|
|
|
|
|
|
|
|
def generate_openai_batch_embeddings(
|
|
|
- model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = ""
|
|
|
+ model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "", prefix: str = None
|
|
|
) -> Optional[list[list[float]]]:
|
|
|
try:
|
|
|
r = requests.post(
|
|
@@ -420,7 +421,7 @@ def generate_openai_batch_embeddings(
|
|
|
"Content-Type": "application/json",
|
|
|
"Authorization": f"Bearer {key}",
|
|
|
},
|
|
|
- json={"input": texts, "model": model},
|
|
|
+ json={"input": texts, "model": model} if not prefix else {"input": texts, "model": model, "prefix": prefix},
|
|
|
)
|
|
|
r.raise_for_status()
|
|
|
data = r.json()
|
|
@@ -434,7 +435,7 @@ def generate_openai_batch_embeddings(
|
|
|
|
|
|
|
|
|
def generate_ollama_batch_embeddings(
|
|
|
- model: str, texts: list[str], url: str, key: str = ""
|
|
|
+ model: str, texts: list[str], url: str, key: str = "", prefix: str = None
|
|
|
) -> Optional[list[list[float]]]:
|
|
|
try:
|
|
|
r = requests.post(
|
|
@@ -443,7 +444,7 @@ def generate_ollama_batch_embeddings(
|
|
|
"Content-Type": "application/json",
|
|
|
"Authorization": f"Bearer {key}",
|
|
|
},
|
|
|
- json={"input": texts, "model": model},
|
|
|
+ json={"input": texts, "model": model} if not prefix else {"input": texts, "model": model, "prefix": prefix},
|
|
|
)
|
|
|
r.raise_for_status()
|
|
|
data = r.json()
|
|
@@ -457,25 +458,25 @@ def generate_ollama_batch_embeddings(
|
|
|
return None
|
|
|
|
|
|
|
|
|
-def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
|
|
|
+def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], prefix: Union[str , None] = None, **kwargs):
|
|
|
url = kwargs.get("url", "")
|
|
|
key = kwargs.get("key", "")
|
|
|
|
|
|
if engine == "ollama":
|
|
|
if isinstance(text, list):
|
|
|
embeddings = generate_ollama_batch_embeddings(
|
|
|
- **{"model": model, "texts": text, "url": url, "key": key}
|
|
|
+ **{"model": model, "texts": text, "url": url, "key": key, "prefix": prefix}
|
|
|
)
|
|
|
else:
|
|
|
embeddings = generate_ollama_batch_embeddings(
|
|
|
- **{"model": model, "texts": [text], "url": url, "key": key}
|
|
|
+ **{"model": model, "texts": [text], "url": url, "key": key, "prefix": prefix}
|
|
|
)
|
|
|
return embeddings[0] if isinstance(text, str) else embeddings
|
|
|
elif engine == "openai":
|
|
|
if isinstance(text, list):
|
|
|
- embeddings = generate_openai_batch_embeddings(model, text, url, key)
|
|
|
+ embeddings = generate_openai_batch_embeddings(model, text, url, key, prefix)
|
|
|
else:
|
|
|
- embeddings = generate_openai_batch_embeddings(model, [text], url, key)
|
|
|
+ embeddings = generate_openai_batch_embeddings(model, [text], url, key, prefix)
|
|
|
|
|
|
return embeddings[0] if isinstance(text, str) else embeddings
|
|
|
|
|
@@ -512,9 +513,10 @@ class RerankCompressor(BaseDocumentCompressor):
|
|
|
else:
|
|
|
from sentence_transformers import util
|
|
|
|
|
|
- query_embedding = self.embedding_function(query)
|
|
|
+ query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
|
|
|
document_embedding = self.embedding_function(
|
|
|
- [doc.page_content for doc in documents]
|
|
|
+ [doc.page_content for doc in documents],
|
|
|
+ RAG_EMBEDDING_PASSAGE_PREFIX
|
|
|
)
|
|
|
scores = util.cos_sim(query_embedding, document_embedding)[0]
|
|
|
|