Browse Source

Merge pull request #7881 from gabriel-ecegi/dev

feat: Batch Processing for Large-Scale Document Import
Timothy Jaeryang Baek 7 tháng trước cách đây
mục cha
commit
9abae36264

+ 85 - 4
backend/open_webui/routers/knowledge.py

@@ -1,5 +1,4 @@
-import json
-from typing import Optional, Union
+from typing import List, Optional
 from pydantic import BaseModel
 from fastapi import APIRouter, Depends, HTTPException, status, Request
 import logging
@@ -12,11 +11,11 @@ from open_webui.models.knowledge import (
 )
 from open_webui.models.files import Files, FileModel
 from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
-from open_webui.routers.retrieval import process_file, ProcessFileForm
+from open_webui.routers.retrieval import process_file, ProcessFileForm, process_files_batch, BatchProcessFilesForm
 
 
 from open_webui.constants import ERROR_MESSAGES
-from open_webui.utils.auth import get_admin_user, get_verified_user
+from open_webui.utils.auth import get_verified_user
 from open_webui.utils.access_control import has_access, has_permission
 
 
@@ -514,3 +513,85 @@ async def reset_knowledge_by_id(id: str, user=Depends(get_verified_user)):
     knowledge = Knowledges.update_knowledge_data_by_id(id=id, data={"file_ids": []})
 
     return knowledge
+
+
+############################
+# AddFilesToKnowledge
+############################
+
+@router.post("/{id}/files/batch/add", response_model=Optional[KnowledgeFilesResponse])
+def add_files_to_knowledge_batch(
+    id: str,
+    form_data: list[KnowledgeFileIdForm],
+    user=Depends(get_verified_user),
+):
+    """
+    Add multiple files to a knowledge base
+    """
+    knowledge = Knowledges.get_knowledge_by_id(id=id)
+    if not knowledge:
+        raise HTTPException(
+            status_code=status.HTTP_400_BAD_REQUEST,
+            detail=ERROR_MESSAGES.NOT_FOUND,
+        )
+
+    if knowledge.user_id != user.id and user.role != "admin":
+        raise HTTPException(
+            status_code=status.HTTP_400_BAD_REQUEST,
+            detail=ERROR_MESSAGES.ACCESS_PROHIBITED,
+        )
+
+    # Get files content
+    print(f"files/batch/add - {len(form_data)} files")
+    files: List[FileModel] = []
+    for form in form_data:
+        file = Files.get_file_by_id(form.file_id)
+        if not file:
+            raise HTTPException(
+                status_code=status.HTTP_400_BAD_REQUEST,
+                detail=f"File {form.file_id} not found",
+            )
+        files.append(file)
+
+    # Process files
+    try:
+        result = process_files_batch(BatchProcessFilesForm(
+            files=files,
+            collection_name=id
+        ))
+    except Exception as e:
+        log.error(f"add_files_to_knowledge_batch: Exception occurred: {e}", exc_info=True)
+        raise HTTPException(
+            status_code=status.HTTP_400_BAD_REQUEST,
+            detail=str(e)
+        )
+    
+    # Add successful files to knowledge base
+    data = knowledge.data or {}
+    existing_file_ids = data.get("file_ids", [])
+    
+    # Only add files that were successfully processed
+    successful_file_ids = [r.file_id for r in result.results if r.status == "completed"]
+    for file_id in successful_file_ids:
+        if file_id not in existing_file_ids:
+            existing_file_ids.append(file_id)
+    
+    data["file_ids"] = existing_file_ids
+    knowledge = Knowledges.update_knowledge_data_by_id(id=id, data=data)
+
+    # If there were any errors, include them in the response
+    if result.errors:
+        error_details = [f"{err.file_id}: {err.error}" for err in result.errors]
+        return KnowledgeFilesResponse(
+            **knowledge.model_dump(),
+            files=Files.get_files_by_ids(existing_file_ids),
+            warnings={
+                "message": "Some files failed to process",
+                "errors": error_details
+            }
+        )
+
+    return KnowledgeFilesResponse(
+        **knowledge.model_dump(),
+        files=Files.get_files_by_ids(existing_file_ids)
+    )

+ 96 - 2
backend/open_webui/routers/retrieval.py

@@ -7,7 +7,7 @@ import shutil
 import uuid
 from datetime import datetime
 from pathlib import Path
-from typing import Iterator, Optional, Sequence, Union
+from typing import Iterator, List, Optional, Sequence, Union
 
 from fastapi import (
     Depends,
@@ -28,7 +28,7 @@ import tiktoken
 from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
 from langchain_core.documents import Document
 
-from open_webui.models.files import Files
+from open_webui.models.files import FileModel, Files
 from open_webui.models.knowledge import Knowledges
 from open_webui.storage.provider import Storage
 
@@ -1428,3 +1428,97 @@ if ENV == "dev":
     @router.get("/ef/{text}")
     async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
         return {"result": request.app.state.EMBEDDING_FUNCTION(text)}
+
+class BatchProcessFilesForm(BaseModel):
+    files: List[FileModel]
+    collection_name: str
+
+class BatchProcessFilesResult(BaseModel):
+    file_id: str
+    status: str
+    error: Optional[str] = None
+
+class BatchProcessFilesResponse(BaseModel):
+    results: List[BatchProcessFilesResult]
+    errors: List[BatchProcessFilesResult]
+
+@router.post("/process/files/batch")
+def process_files_batch(
+    form_data: BatchProcessFilesForm,
+    user=Depends(get_verified_user),
+) -> BatchProcessFilesResponse:
+    """
+    Process a batch of files and save them to the vector database.
+    """
+    results: List[BatchProcessFilesResult] = []
+    errors: List[BatchProcessFilesResult] = []
+    collection_name = form_data.collection_name
+
+    # Prepare all documents first
+    all_docs: List[Document] = []
+    for file in form_data.files:
+        try:
+            text_content = file.data.get("content", "")
+            
+            docs: List[Document] = [
+                Document(
+                    page_content=text_content.replace("<br/>", "\n"),
+                    metadata={
+                        **file.meta,
+                        "name": file.filename,
+                        "created_by": file.user_id,
+                        "file_id": file.id,
+                        "source": file.filename,
+                    },
+                )
+            ]
+
+            hash = calculate_sha256_string(text_content)
+            Files.update_file_hash_by_id(file.id, hash)
+            Files.update_file_data_by_id(file.id, {"content": text_content})
+            
+            all_docs.extend(docs)
+            results.append(BatchProcessFilesResult(
+                file_id=file.id,
+                status="prepared"
+            ))
+
+        except Exception as e:
+            log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}")
+            errors.append(BatchProcessFilesResult(
+                file_id=file.id,
+                status="failed",
+                error=str(e)
+            ))
+
+    # Save all documents in one batch
+    if all_docs:
+        try:
+            save_docs_to_vector_db(
+                docs=all_docs,
+                collection_name=collection_name,
+                add=True
+            )
+            
+            # Update all files with collection name
+            for result in results:
+                Files.update_file_metadata_by_id(
+                    result.file_id,
+                    {"collection_name": collection_name}
+                )
+                result.status = "completed"
+
+        except Exception as e:
+            log.error(f"process_files_batch: Error saving documents to vector DB: {str(e)}")
+            for result in results:
+                result.status = "failed"
+                errors.append(BatchProcessFilesResult(
+                    file_id=result.file_id,
+                    error=str(e)
+                ))
+
+    return BatchProcessFilesResponse(
+        results=results,
+        errors=errors
+    )
+