|
@@ -146,7 +146,10 @@ def query_doc_with_hybrid_search(
|
|
|
|
|
|
# retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
|
|
|
if k < k_reranker:
|
|
|
- sorted_items = sorted(zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True)
|
|
|
+ if VECTOR_DB == "chroma":
|
|
|
+ sorted_items = sorted(zip(distances, metadatas, documents), key=lambda x: x[0], reverse=False)
|
|
|
+ else:
|
|
|
+ sorted_items = sorted(zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True)
|
|
|
sorted_items = sorted_items[:k]
|
|
|
distances, documents, metadatas = map(list, zip(*sorted_items))
|
|
|
result = {
|
|
@@ -310,9 +313,9 @@ def query_collection_with_hybrid_search(
|
|
|
if VECTOR_DB == "chroma":
|
|
|
# Chroma uses unconventional cosine similarity, so we don't need to reverse the results
|
|
|
# https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
|
|
|
- return merge_and_sort_query_results(results, k=k, reverse=False)
|
|
|
+ return merge_and_sort_query_results(results, k=k_reranker, reverse=False)
|
|
|
else:
|
|
|
- return merge_and_sort_query_results(results, k=k, reverse=True)
|
|
|
+ return merge_and_sort_query_results(results, k=k_reranker, reverse=True)
|
|
|
|
|
|
|
|
|
def get_embedding_function(
|