main.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. import requests
  2. import logging
  3. import ftfy
  4. import sys
  5. from langchain_community.document_loaders import (
  6. AzureAIDocumentIntelligenceLoader,
  7. BSHTMLLoader,
  8. CSVLoader,
  9. Docx2txtLoader,
  10. OutlookMessageLoader,
  11. PyPDFLoader,
  12. TextLoader,
  13. UnstructuredEPubLoader,
  14. UnstructuredExcelLoader,
  15. UnstructuredMarkdownLoader,
  16. UnstructuredPowerPointLoader,
  17. UnstructuredRSTLoader,
  18. UnstructuredXMLLoader,
  19. YoutubeLoader,
  20. )
  21. from langchain_core.documents import Document
  22. from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL
  23. logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
  24. log = logging.getLogger(__name__)
  25. log.setLevel(SRC_LOG_LEVELS["RAG"])
  26. known_source_ext = [
  27. "go",
  28. "py",
  29. "java",
  30. "sh",
  31. "bat",
  32. "ps1",
  33. "cmd",
  34. "js",
  35. "ts",
  36. "css",
  37. "cpp",
  38. "hpp",
  39. "h",
  40. "c",
  41. "cs",
  42. "sql",
  43. "log",
  44. "ini",
  45. "pl",
  46. "pm",
  47. "r",
  48. "dart",
  49. "dockerfile",
  50. "env",
  51. "php",
  52. "hs",
  53. "hsc",
  54. "lua",
  55. "nginxconf",
  56. "conf",
  57. "m",
  58. "mm",
  59. "plsql",
  60. "perl",
  61. "rb",
  62. "rs",
  63. "db2",
  64. "scala",
  65. "bash",
  66. "swift",
  67. "vue",
  68. "svelte",
  69. "msg",
  70. "ex",
  71. "exs",
  72. "erl",
  73. "tsx",
  74. "jsx",
  75. "hs",
  76. "lhs",
  77. "json",
  78. ]
  79. class TikaLoader:
  80. def __init__(self, url, file_path, mime_type=None):
  81. self.url = url
  82. self.file_path = file_path
  83. self.mime_type = mime_type
  84. def load(self) -> list[Document]:
  85. with open(self.file_path, "rb") as f:
  86. data = f.read()
  87. if self.mime_type is not None:
  88. headers = {"Content-Type": self.mime_type}
  89. else:
  90. headers = {}
  91. endpoint = self.url
  92. if not endpoint.endswith("/"):
  93. endpoint += "/"
  94. endpoint += "tika/text"
  95. r = requests.put(endpoint, data=data, headers=headers)
  96. if r.ok:
  97. raw_metadata = r.json()
  98. text = raw_metadata.get("X-TIKA:content", "<No text content found>")
  99. if "Content-Type" in raw_metadata:
  100. headers["Content-Type"] = raw_metadata["Content-Type"]
  101. log.debug("Tika extracted text: %s", text)
  102. return [Document(page_content=text, metadata=headers)]
  103. else:
  104. raise Exception(f"Error calling Tika: {r.reason}")
  105. class DoclingLoader:
  106. def __init__(self, url, file_path=None, mime_type=None):
  107. self.url = url.rstrip("/")
  108. self.file_path = file_path
  109. self.mime_type = mime_type
  110. def load(self) -> list[Document]:
  111. with open(self.file_path, "rb") as f:
  112. files = {
  113. "files": (
  114. self.file_path,
  115. f,
  116. self.mime_type or "application/octet-stream",
  117. )
  118. }
  119. params = {
  120. "from_formats": [
  121. "docx",
  122. "pptx",
  123. "html",
  124. "image",
  125. "pdf",
  126. "asciidoc",
  127. "md",
  128. "csv",
  129. "xlsx",
  130. "xml_uspto",
  131. "xml_jats",
  132. "json_docling",
  133. ],
  134. "to_formats": ["md"],
  135. "image_export_mode": "placeholder",
  136. "do_ocr": True,
  137. "force_ocr": False,
  138. "ocr_engine": "easyocr",
  139. "ocr_lang": None,
  140. "pdf_backend": "dlparse_v2",
  141. "table_mode": "accurate",
  142. "abort_on_error": False,
  143. "return_as_file": False,
  144. "do_table_structure": True,
  145. "include_images": True,
  146. "images_scale": 2.0,
  147. }
  148. endpoint = f"{self.url}/v1alpha/convert/file"
  149. r = requests.post(endpoint, files=files, data=params)
  150. if r.ok:
  151. result = r.json()
  152. document_data = result.get("document", {})
  153. text = document_data.get("md_content", "<No text content found>")
  154. metadata = {"Content-Type": self.mime_type} if self.mime_type else {}
  155. log.debug("Docling extracted text: %s", text)
  156. return [Document(page_content=text, metadata=metadata)]
  157. else:
  158. error_msg = f"Error calling Docling API: {r.reason}"
  159. if r.text:
  160. try:
  161. error_data = r.json()
  162. if "detail" in error_data:
  163. error_msg += f" - {error_data['detail']}"
  164. except Exception:
  165. error_msg += f" - {r.text}"
  166. raise Exception(f"Error calling Docling: {error_msg}")
  167. class Loader:
  168. def __init__(self, engine: str = "", **kwargs):
  169. self.engine = engine
  170. self.kwargs = kwargs
  171. def load(
  172. self, filename: str, file_content_type: str, file_path: str
  173. ) -> list[Document]:
  174. loader = self._get_loader(filename, file_content_type, file_path)
  175. docs = loader.load()
  176. return [
  177. Document(
  178. page_content=ftfy.fix_text(doc.page_content), metadata=doc.metadata
  179. )
  180. for doc in docs
  181. ]
  182. def _get_loader(self, filename: str, file_content_type: str, file_path: str):
  183. file_ext = filename.split(".")[-1].lower()
  184. if self.engine == "tika" and self.kwargs.get("TIKA_SERVER_URL"):
  185. if file_ext in known_source_ext or (
  186. file_content_type and file_content_type.find("text/") >= 0
  187. ):
  188. loader = TextLoader(file_path, autodetect_encoding=True)
  189. else:
  190. loader = TikaLoader(
  191. url=self.kwargs.get("TIKA_SERVER_URL"),
  192. file_path=file_path,
  193. mime_type=file_content_type,
  194. )
  195. elif self.engine == "docling" and self.kwargs.get("DOCLING_SERVER_URL"):
  196. loader = DoclingLoader(
  197. url=self.kwargs.get("DOCLING_SERVER_URL"),
  198. file_path=file_path,
  199. mime_type=file_content_type,
  200. )
  201. elif (
  202. self.engine == "document_intelligence"
  203. and self.kwargs.get("DOCUMENT_INTELLIGENCE_ENDPOINT") != ""
  204. and self.kwargs.get("DOCUMENT_INTELLIGENCE_KEY") != ""
  205. and (
  206. file_ext in ["pdf", "xls", "xlsx", "docx", "ppt", "pptx"]
  207. or file_content_type
  208. in [
  209. "application/vnd.ms-excel",
  210. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  211. "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
  212. "application/vnd.ms-powerpoint",
  213. "application/vnd.openxmlformats-officedocument.presentationml.presentation",
  214. ]
  215. )
  216. ):
  217. loader = AzureAIDocumentIntelligenceLoader(
  218. file_path=file_path,
  219. api_endpoint=self.kwargs.get("DOCUMENT_INTELLIGENCE_ENDPOINT"),
  220. api_key=self.kwargs.get("DOCUMENT_INTELLIGENCE_KEY"),
  221. )
  222. else:
  223. if file_ext == "pdf":
  224. loader = PyPDFLoader(
  225. file_path, extract_images=self.kwargs.get("PDF_EXTRACT_IMAGES")
  226. )
  227. elif file_ext == "csv":
  228. loader = CSVLoader(file_path)
  229. elif file_ext == "rst":
  230. loader = UnstructuredRSTLoader(file_path, mode="elements")
  231. elif file_ext == "xml":
  232. loader = UnstructuredXMLLoader(file_path)
  233. elif file_ext in ["htm", "html"]:
  234. loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
  235. elif file_ext == "md":
  236. loader = TextLoader(file_path, autodetect_encoding=True)
  237. elif file_content_type == "application/epub+zip":
  238. loader = UnstructuredEPubLoader(file_path)
  239. elif (
  240. file_content_type
  241. == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
  242. or file_ext == "docx"
  243. ):
  244. loader = Docx2txtLoader(file_path)
  245. elif file_content_type in [
  246. "application/vnd.ms-excel",
  247. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  248. ] or file_ext in ["xls", "xlsx"]:
  249. loader = UnstructuredExcelLoader(file_path)
  250. elif file_content_type in [
  251. "application/vnd.ms-powerpoint",
  252. "application/vnd.openxmlformats-officedocument.presentationml.presentation",
  253. ] or file_ext in ["ppt", "pptx"]:
  254. loader = UnstructuredPowerPointLoader(file_path)
  255. elif file_ext == "msg":
  256. loader = OutlookMessageLoader(file_path)
  257. elif file_ext in known_source_ext or (
  258. file_content_type and file_content_type.find("text/") >= 0
  259. ):
  260. loader = TextLoader(file_path, autodetect_encoding=True)
  261. else:
  262. loader = TextLoader(file_path, autodetect_encoding=True)
  263. return loader