utils.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import asyncio
  6. import requests
  7. from huggingface_hub import snapshot_download
  8. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain_core.documents import Document
  11. from open_webui.config import VECTOR_DB
  12. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  13. from open_webui.utils.misc import get_last_user_message
  14. from open_webui.env import SRC_LOG_LEVELS, OFFLINE_MODE
  15. from open_webui.config import (
  16. RAG_EMBEDDING_QUERY_PREFIX,
  17. RAG_EMBEDDING_PASSAGE_PREFIX,
  18. RAG_EMBEDDING_PREFIX_FIELD_NAME
  19. )
  20. log = logging.getLogger(__name__)
  21. log.setLevel(SRC_LOG_LEVELS["RAG"])
  22. from typing import Any
  23. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  24. from langchain_core.retrievers import BaseRetriever
  25. class VectorSearchRetriever(BaseRetriever):
  26. collection_name: Any
  27. embedding_function: Any
  28. top_k: int
  29. def _get_relevant_documents(
  30. self,
  31. query: str,
  32. *,
  33. run_manager: CallbackManagerForRetrieverRun,
  34. ) -> list[Document]:
  35. result = VECTOR_DB_CLIENT.search(
  36. collection_name=self.collection_name,
  37. vectors=[self.embedding_function(query,RAG_EMBEDDING_QUERY_PREFIX)],
  38. limit=self.top_k,
  39. )
  40. ids = result.ids[0]
  41. metadatas = result.metadatas[0]
  42. documents = result.documents[0]
  43. results = []
  44. for idx in range(len(ids)):
  45. results.append(
  46. Document(
  47. metadata=metadatas[idx],
  48. page_content=documents[idx],
  49. )
  50. )
  51. return results
  52. def query_doc(
  53. collection_name: str,
  54. query_embedding: list[float],
  55. k: int,
  56. ):
  57. try:
  58. result = VECTOR_DB_CLIENT.search(
  59. collection_name=collection_name,
  60. vectors=[query_embedding],
  61. limit=k,
  62. )
  63. if result:
  64. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  65. return result
  66. except Exception as e:
  67. print(e)
  68. raise e
  69. def query_doc_with_hybrid_search(
  70. collection_name: str,
  71. query: str,
  72. embedding_function,
  73. k: int,
  74. reranking_function,
  75. r: float,
  76. ) -> dict:
  77. try:
  78. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  79. bm25_retriever = BM25Retriever.from_texts(
  80. texts=result.documents[0],
  81. metadatas=result.metadatas[0],
  82. )
  83. bm25_retriever.k = k
  84. vector_search_retriever = VectorSearchRetriever(
  85. collection_name=collection_name,
  86. embedding_function=embedding_function,
  87. top_k=k,
  88. )
  89. ensemble_retriever = EnsembleRetriever(
  90. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  91. )
  92. compressor = RerankCompressor(
  93. embedding_function=embedding_function,
  94. top_n=k,
  95. reranking_function=reranking_function,
  96. r_score=r,
  97. )
  98. compression_retriever = ContextualCompressionRetriever(
  99. base_compressor=compressor, base_retriever=ensemble_retriever
  100. )
  101. result = compression_retriever.invoke(query)
  102. result = {
  103. "distances": [[d.metadata.get("score") for d in result]],
  104. "documents": [[d.page_content for d in result]],
  105. "metadatas": [[d.metadata for d in result]],
  106. }
  107. log.info(
  108. "query_doc_with_hybrid_search:result "
  109. + f'{result["metadatas"]} {result["distances"]}'
  110. )
  111. return result
  112. except Exception as e:
  113. raise e
  114. def merge_and_sort_query_results(
  115. query_results: list[dict], k: int, reverse: bool = False
  116. ) -> list[dict]:
  117. # Initialize lists to store combined data
  118. combined_distances = []
  119. combined_documents = []
  120. combined_metadatas = []
  121. for data in query_results:
  122. combined_distances.extend(data["distances"][0])
  123. combined_documents.extend(data["documents"][0])
  124. combined_metadatas.extend(data["metadatas"][0])
  125. # Create a list of tuples (distance, document, metadata)
  126. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  127. # Sort the list based on distances
  128. combined.sort(key=lambda x: x[0], reverse=reverse)
  129. # We don't have anything :-(
  130. if not combined:
  131. sorted_distances = []
  132. sorted_documents = []
  133. sorted_metadatas = []
  134. else:
  135. # Unzip the sorted list
  136. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  137. # Slicing the lists to include only k elements
  138. sorted_distances = list(sorted_distances)[:k]
  139. sorted_documents = list(sorted_documents)[:k]
  140. sorted_metadatas = list(sorted_metadatas)[:k]
  141. # Create the output dictionary
  142. result = {
  143. "distances": [sorted_distances],
  144. "documents": [sorted_documents],
  145. "metadatas": [sorted_metadatas],
  146. }
  147. return result
  148. def query_collection(
  149. collection_names: list[str],
  150. queries: list[str],
  151. embedding_function,
  152. k: int,
  153. ) -> dict:
  154. results = []
  155. for query in queries:
  156. query_embedding = embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  157. for collection_name in collection_names:
  158. if collection_name:
  159. try:
  160. result = query_doc(
  161. collection_name=collection_name,
  162. k=k,
  163. query_embedding=query_embedding,
  164. )
  165. if result is not None:
  166. results.append(result.model_dump())
  167. except Exception as e:
  168. log.exception(f"Error when querying the collection: {e}")
  169. else:
  170. pass
  171. if VECTOR_DB == "chroma":
  172. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  173. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  174. return merge_and_sort_query_results(results, k=k, reverse=False)
  175. else:
  176. return merge_and_sort_query_results(results, k=k, reverse=True)
  177. def query_collection_with_hybrid_search(
  178. collection_names: list[str],
  179. queries: list[str],
  180. embedding_function,
  181. k: int,
  182. reranking_function,
  183. r: float,
  184. ) -> dict:
  185. results = []
  186. error = False
  187. for collection_name in collection_names:
  188. try:
  189. for query in queries:
  190. result = query_doc_with_hybrid_search(
  191. collection_name=collection_name,
  192. query=query,
  193. embedding_function=embedding_function,
  194. k=k,
  195. reranking_function=reranking_function,
  196. r=r,
  197. )
  198. results.append(result)
  199. except Exception as e:
  200. log.exception(
  201. "Error when querying the collection with " f"hybrid_search: {e}"
  202. )
  203. error = True
  204. if error:
  205. raise Exception(
  206. "Hybrid search failed for all collections. Using Non hybrid search as fallback."
  207. )
  208. if VECTOR_DB == "chroma":
  209. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  210. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  211. return merge_and_sort_query_results(results, k=k, reverse=False)
  212. else:
  213. return merge_and_sort_query_results(results, k=k, reverse=True)
  214. def get_embedding_function(
  215. embedding_engine,
  216. embedding_model,
  217. embedding_function,
  218. url,
  219. key,
  220. embedding_batch_size,
  221. ):
  222. if embedding_engine == "":
  223. return lambda query, prefix: embedding_function.encode(query, prompt = prefix if prefix else None).tolist()
  224. elif embedding_engine in ["ollama", "openai"]:
  225. func = lambda query, prefix: generate_embeddings(
  226. engine=embedding_engine,
  227. model=embedding_model,
  228. text=query,
  229. prefix=prefix,
  230. url=url,
  231. key=key,
  232. )
  233. def generate_multiple(query, prefix, func):
  234. if isinstance(query, list):
  235. embeddings = []
  236. for i in range(0, len(query), embedding_batch_size):
  237. embeddings.extend(func(query[i : i + embedding_batch_size], prefix))
  238. return embeddings
  239. else:
  240. return func(query, prefix)
  241. return lambda query, prefix: generate_multiple(query, prefix, func)
  242. def get_sources_from_files(
  243. files,
  244. queries,
  245. embedding_function,
  246. k,
  247. reranking_function,
  248. r,
  249. hybrid_search,
  250. ):
  251. log.debug(f"files: {files} {queries} {embedding_function} {reranking_function}")
  252. extracted_collections = []
  253. relevant_contexts = []
  254. for file in files:
  255. if file.get("context") == "full":
  256. context = {
  257. "documents": [[file.get("file").get("data", {}).get("content")]],
  258. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  259. }
  260. else:
  261. context = None
  262. collection_names = []
  263. if file.get("type") == "collection":
  264. if file.get("legacy"):
  265. collection_names = file.get("collection_names", [])
  266. else:
  267. collection_names.append(file["id"])
  268. elif file.get("collection_name"):
  269. collection_names.append(file["collection_name"])
  270. elif file.get("id"):
  271. if file.get("legacy"):
  272. collection_names.append(f"{file['id']}")
  273. else:
  274. collection_names.append(f"file-{file['id']}")
  275. collection_names = set(collection_names).difference(extracted_collections)
  276. if not collection_names:
  277. log.debug(f"skipping {file} as it has already been extracted")
  278. continue
  279. try:
  280. context = None
  281. if file.get("type") == "text":
  282. context = file["content"]
  283. else:
  284. if hybrid_search:
  285. try:
  286. context = query_collection_with_hybrid_search(
  287. collection_names=collection_names,
  288. queries=queries,
  289. embedding_function=embedding_function,
  290. k=k,
  291. reranking_function=reranking_function,
  292. r=r,
  293. )
  294. except Exception as e:
  295. log.debug(
  296. "Error when using hybrid search, using"
  297. " non hybrid search as fallback."
  298. )
  299. if (not hybrid_search) or (context is None):
  300. context = query_collection(
  301. collection_names=collection_names,
  302. queries=queries,
  303. embedding_function=embedding_function,
  304. k=k,
  305. )
  306. except Exception as e:
  307. log.exception(e)
  308. extracted_collections.extend(collection_names)
  309. if context:
  310. if "data" in file:
  311. del file["data"]
  312. relevant_contexts.append({**context, "file": file})
  313. sources = []
  314. for context in relevant_contexts:
  315. try:
  316. if "documents" in context:
  317. if "metadatas" in context:
  318. source = {
  319. "source": context["file"],
  320. "document": context["documents"][0],
  321. "metadata": context["metadatas"][0],
  322. }
  323. if "distances" in context and context["distances"]:
  324. source["distances"] = context["distances"][0]
  325. sources.append(source)
  326. except Exception as e:
  327. log.exception(e)
  328. return sources
  329. def get_model_path(model: str, update_model: bool = False):
  330. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  331. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  332. local_files_only = not update_model
  333. if OFFLINE_MODE:
  334. local_files_only = True
  335. snapshot_kwargs = {
  336. "cache_dir": cache_dir,
  337. "local_files_only": local_files_only,
  338. }
  339. log.debug(f"model: {model}")
  340. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  341. # Inspiration from upstream sentence_transformers
  342. if (
  343. os.path.exists(model)
  344. or ("\\" in model or model.count("/") > 1)
  345. and local_files_only
  346. ):
  347. # If fully qualified path exists, return input, else set repo_id
  348. return model
  349. elif "/" not in model:
  350. # Set valid repo_id for model short-name
  351. model = "sentence-transformers" + "/" + model
  352. snapshot_kwargs["repo_id"] = model
  353. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  354. try:
  355. model_repo_path = snapshot_download(**snapshot_kwargs)
  356. log.debug(f"model_repo_path: {model_repo_path}")
  357. return model_repo_path
  358. except Exception as e:
  359. log.exception(f"Cannot determine model snapshot path: {e}")
  360. return model
  361. def generate_openai_batch_embeddings(
  362. model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "", prefix: str = None
  363. ) -> Optional[list[list[float]]]:
  364. try:
  365. json_data = {
  366. "input": texts,
  367. "model": model
  368. }
  369. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME,str) and isinstance(prefix,str):
  370. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  371. r = requests.post(
  372. f"{url}/embeddings",
  373. headers={
  374. "Content-Type": "application/json",
  375. "Authorization": f"Bearer {key}",
  376. },
  377. json=json_data,
  378. )
  379. r.raise_for_status()
  380. data = r.json()
  381. if "data" in data:
  382. return [elem["embedding"] for elem in data["data"]]
  383. else:
  384. raise "Something went wrong :/"
  385. except Exception as e:
  386. print(e)
  387. return None
  388. def generate_ollama_batch_embeddings(
  389. model: str, texts: list[str], url: str, key: str = "", prefix: str = None
  390. ) -> Optional[list[list[float]]]:
  391. try:
  392. json_data = {
  393. "input": texts,
  394. "model": model
  395. }
  396. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME,str) and isinstance(prefix,str):
  397. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  398. r = requests.post(
  399. f"{url}/api/embed",
  400. headers={
  401. "Content-Type": "application/json",
  402. "Authorization": f"Bearer {key}",
  403. },
  404. json=json_data,
  405. )
  406. r.raise_for_status()
  407. data = r.json()
  408. if "embeddings" in data:
  409. return data["embeddings"]
  410. else:
  411. raise "Something went wrong :/"
  412. except Exception as e:
  413. print(e)
  414. return None
  415. def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], prefix: Union[str , None] = None, **kwargs):
  416. url = kwargs.get("url", "")
  417. key = kwargs.get("key", "")
  418. if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
  419. if isinstance(text, list):
  420. text = [f'{prefix}{text_element}' for text_element in text]
  421. else:
  422. text = f'{prefix}{text}'
  423. if engine == "ollama":
  424. if isinstance(text, list):
  425. embeddings = generate_ollama_batch_embeddings(
  426. **{"model": model, "texts": text, "url": url, "key": key, "prefix": prefix}
  427. )
  428. else:
  429. embeddings = generate_ollama_batch_embeddings(
  430. **{"model": model, "texts": [text], "url": url, "key": key, "prefix": prefix}
  431. )
  432. return embeddings[0] if isinstance(text, str) else embeddings
  433. elif engine == "openai":
  434. if isinstance(text, list):
  435. embeddings = generate_openai_batch_embeddings(model, text, url, key, prefix)
  436. else:
  437. embeddings = generate_openai_batch_embeddings(model, [text], url, key, prefix)
  438. return embeddings[0] if isinstance(text, str) else embeddings
  439. import operator
  440. from typing import Optional, Sequence
  441. from langchain_core.callbacks import Callbacks
  442. from langchain_core.documents import BaseDocumentCompressor, Document
  443. class RerankCompressor(BaseDocumentCompressor):
  444. embedding_function: Any
  445. top_n: int
  446. reranking_function: Any
  447. r_score: float
  448. class Config:
  449. extra = "forbid"
  450. arbitrary_types_allowed = True
  451. def compress_documents(
  452. self,
  453. documents: Sequence[Document],
  454. query: str,
  455. callbacks: Optional[Callbacks] = None,
  456. ) -> Sequence[Document]:
  457. reranking = self.reranking_function is not None
  458. if reranking:
  459. scores = self.reranking_function.predict(
  460. [(query, doc.page_content) for doc in documents]
  461. )
  462. else:
  463. from sentence_transformers import util
  464. query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  465. document_embedding = self.embedding_function(
  466. [doc.page_content for doc in documents],
  467. RAG_EMBEDDING_PASSAGE_PREFIX
  468. )
  469. scores = util.cos_sim(query_embedding, document_embedding)[0]
  470. docs_with_scores = list(zip(documents, scores.tolist()))
  471. if self.r_score:
  472. docs_with_scores = [
  473. (d, s) for d, s in docs_with_scores if s >= self.r_score
  474. ]
  475. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  476. final_results = []
  477. for doc, doc_score in result[: self.top_n]:
  478. metadata = doc.metadata
  479. metadata["score"] = doc_score
  480. doc = Document(
  481. page_content=doc.page_content,
  482. metadata=metadata,
  483. )
  484. final_results.append(doc)
  485. return final_results