utils.py 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. import hashlib
  6. from concurrent.futures import ThreadPoolExecutor
  7. import time
  8. from urllib.parse import quote
  9. from huggingface_hub import snapshot_download
  10. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain_core.documents import Document
  13. from open_webui.config import VECTOR_DB
  14. from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT
  15. from open_webui.models.users import UserModel
  16. from open_webui.models.files import Files
  17. from open_webui.models.knowledge import Knowledges
  18. from open_webui.models.chats import Chats
  19. from open_webui.models.notes import Notes
  20. from open_webui.retrieval.vector.main import GetResult
  21. from open_webui.utils.access_control import has_access
  22. from open_webui.utils.misc import get_message_list
  23. from open_webui.env import (
  24. SRC_LOG_LEVELS,
  25. OFFLINE_MODE,
  26. ENABLE_FORWARD_USER_INFO_HEADERS,
  27. )
  28. from open_webui.config import (
  29. RAG_EMBEDDING_QUERY_PREFIX,
  30. RAG_EMBEDDING_CONTENT_PREFIX,
  31. RAG_EMBEDDING_PREFIX_FIELD_NAME,
  32. )
  33. log = logging.getLogger(__name__)
  34. log.setLevel(SRC_LOG_LEVELS["RAG"])
  35. from typing import Any
  36. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  37. from langchain_core.retrievers import BaseRetriever
  38. class VectorSearchRetriever(BaseRetriever):
  39. collection_name: Any
  40. embedding_function: Any
  41. top_k: int
  42. def _get_relevant_documents(
  43. self,
  44. query: str,
  45. *,
  46. run_manager: CallbackManagerForRetrieverRun,
  47. ) -> list[Document]:
  48. result = VECTOR_DB_CLIENT.search(
  49. collection_name=self.collection_name,
  50. vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],
  51. limit=self.top_k,
  52. )
  53. ids = result.ids[0]
  54. metadatas = result.metadatas[0]
  55. documents = result.documents[0]
  56. results = []
  57. for idx in range(len(ids)):
  58. results.append(
  59. Document(
  60. metadata=metadatas[idx],
  61. page_content=documents[idx],
  62. )
  63. )
  64. return results
  65. def query_doc(
  66. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  67. ):
  68. try:
  69. log.debug(f"query_doc:doc {collection_name}")
  70. result = VECTOR_DB_CLIENT.search(
  71. collection_name=collection_name,
  72. vectors=[query_embedding],
  73. limit=k,
  74. )
  75. if result:
  76. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  77. return result
  78. except Exception as e:
  79. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  80. raise e
  81. def get_doc(collection_name: str, user: UserModel = None):
  82. try:
  83. log.debug(f"get_doc:doc {collection_name}")
  84. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  85. if result:
  86. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  87. return result
  88. except Exception as e:
  89. log.exception(f"Error getting doc {collection_name}: {e}")
  90. raise e
  91. def query_doc_with_hybrid_search(
  92. collection_name: str,
  93. collection_result: GetResult,
  94. query: str,
  95. embedding_function,
  96. k: int,
  97. reranking_function,
  98. k_reranker: int,
  99. r: float,
  100. hybrid_bm25_weight: float,
  101. ) -> dict:
  102. try:
  103. if not collection_result.documents[0]:
  104. log.warning(f"query_doc_with_hybrid_search:no_docs {collection_name}")
  105. return {"documents": [], "metadatas": [], "distances": []}
  106. log.debug(f"query_doc_with_hybrid_search:doc {collection_name}")
  107. bm25_retriever = BM25Retriever.from_texts(
  108. texts=collection_result.documents[0],
  109. metadatas=collection_result.metadatas[0],
  110. )
  111. bm25_retriever.k = k
  112. vector_search_retriever = VectorSearchRetriever(
  113. collection_name=collection_name,
  114. embedding_function=embedding_function,
  115. top_k=k,
  116. )
  117. if hybrid_bm25_weight <= 0:
  118. ensemble_retriever = EnsembleRetriever(
  119. retrievers=[vector_search_retriever], weights=[1.0]
  120. )
  121. elif hybrid_bm25_weight >= 1:
  122. ensemble_retriever = EnsembleRetriever(
  123. retrievers=[bm25_retriever], weights=[1.0]
  124. )
  125. else:
  126. ensemble_retriever = EnsembleRetriever(
  127. retrievers=[bm25_retriever, vector_search_retriever],
  128. weights=[hybrid_bm25_weight, 1.0 - hybrid_bm25_weight],
  129. )
  130. compressor = RerankCompressor(
  131. embedding_function=embedding_function,
  132. top_n=k_reranker,
  133. reranking_function=reranking_function,
  134. r_score=r,
  135. )
  136. compression_retriever = ContextualCompressionRetriever(
  137. base_compressor=compressor, base_retriever=ensemble_retriever
  138. )
  139. result = compression_retriever.invoke(query)
  140. distances = [d.metadata.get("score") for d in result]
  141. documents = [d.page_content for d in result]
  142. metadatas = [d.metadata for d in result]
  143. # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
  144. if k < k_reranker:
  145. sorted_items = sorted(
  146. zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
  147. )
  148. sorted_items = sorted_items[:k]
  149. distances, documents, metadatas = map(list, zip(*sorted_items))
  150. result = {
  151. "distances": [distances],
  152. "documents": [documents],
  153. "metadatas": [metadatas],
  154. }
  155. log.info(
  156. "query_doc_with_hybrid_search:result "
  157. + f'{result["metadatas"]} {result["distances"]}'
  158. )
  159. return result
  160. except Exception as e:
  161. log.exception(f"Error querying doc {collection_name} with hybrid search: {e}")
  162. raise e
  163. def merge_get_results(get_results: list[dict]) -> dict:
  164. # Initialize lists to store combined data
  165. combined_documents = []
  166. combined_metadatas = []
  167. combined_ids = []
  168. for data in get_results:
  169. combined_documents.extend(data["documents"][0])
  170. combined_metadatas.extend(data["metadatas"][0])
  171. combined_ids.extend(data["ids"][0])
  172. # Create the output dictionary
  173. result = {
  174. "documents": [combined_documents],
  175. "metadatas": [combined_metadatas],
  176. "ids": [combined_ids],
  177. }
  178. return result
  179. def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
  180. # Initialize lists to store combined data
  181. combined = dict() # To store documents with unique document hashes
  182. for data in query_results:
  183. distances = data["distances"][0]
  184. documents = data["documents"][0]
  185. metadatas = data["metadatas"][0]
  186. for distance, document, metadata in zip(distances, documents, metadatas):
  187. if isinstance(document, str):
  188. doc_hash = hashlib.sha256(
  189. document.encode()
  190. ).hexdigest() # Compute a hash for uniqueness
  191. if doc_hash not in combined.keys():
  192. combined[doc_hash] = (distance, document, metadata)
  193. continue # if doc is new, no further comparison is needed
  194. # if doc is alredy in, but new distance is better, update
  195. if distance > combined[doc_hash][0]:
  196. combined[doc_hash] = (distance, document, metadata)
  197. combined = list(combined.values())
  198. # Sort the list based on distances
  199. combined.sort(key=lambda x: x[0], reverse=True)
  200. # Slice to keep only the top k elements
  201. sorted_distances, sorted_documents, sorted_metadatas = (
  202. zip(*combined[:k]) if combined else ([], [], [])
  203. )
  204. # Create and return the output dictionary
  205. return {
  206. "distances": [list(sorted_distances)],
  207. "documents": [list(sorted_documents)],
  208. "metadatas": [list(sorted_metadatas)],
  209. }
  210. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  211. results = []
  212. for collection_name in collection_names:
  213. if collection_name:
  214. try:
  215. result = get_doc(collection_name=collection_name)
  216. if result is not None:
  217. results.append(result.model_dump())
  218. except Exception as e:
  219. log.exception(f"Error when querying the collection: {e}")
  220. else:
  221. pass
  222. return merge_get_results(results)
  223. def query_collection(
  224. collection_names: list[str],
  225. queries: list[str],
  226. embedding_function,
  227. k: int,
  228. ) -> dict:
  229. results = []
  230. error = False
  231. def process_query_collection(collection_name, query_embedding):
  232. try:
  233. if collection_name:
  234. result = query_doc(
  235. collection_name=collection_name,
  236. k=k,
  237. query_embedding=query_embedding,
  238. )
  239. if result is not None:
  240. return result.model_dump(), None
  241. return None, None
  242. except Exception as e:
  243. log.exception(f"Error when querying the collection: {e}")
  244. return None, e
  245. # Generate all query embeddings (in one call)
  246. query_embeddings = embedding_function(queries, prefix=RAG_EMBEDDING_QUERY_PREFIX)
  247. log.debug(
  248. f"query_collection: processing {len(queries)} queries across {len(collection_names)} collections"
  249. )
  250. with ThreadPoolExecutor() as executor:
  251. future_results = []
  252. for query_embedding in query_embeddings:
  253. for collection_name in collection_names:
  254. result = executor.submit(
  255. process_query_collection, collection_name, query_embedding
  256. )
  257. future_results.append(result)
  258. task_results = [future.result() for future in future_results]
  259. for result, err in task_results:
  260. if err is not None:
  261. error = True
  262. elif result is not None:
  263. results.append(result)
  264. if error and not results:
  265. log.warning("All collection queries failed. No results returned.")
  266. return merge_and_sort_query_results(results, k=k)
  267. def query_collection_with_hybrid_search(
  268. collection_names: list[str],
  269. queries: list[str],
  270. embedding_function,
  271. k: int,
  272. reranking_function,
  273. k_reranker: int,
  274. r: float,
  275. hybrid_bm25_weight: float,
  276. ) -> dict:
  277. results = []
  278. error = False
  279. # Fetch collection data once per collection sequentially
  280. # Avoid fetching the same data multiple times later
  281. collection_results = {}
  282. for collection_name in collection_names:
  283. try:
  284. log.debug(
  285. f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}"
  286. )
  287. collection_results[collection_name] = VECTOR_DB_CLIENT.get(
  288. collection_name=collection_name
  289. )
  290. except Exception as e:
  291. log.exception(f"Failed to fetch collection {collection_name}: {e}")
  292. collection_results[collection_name] = None
  293. log.info(
  294. f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
  295. )
  296. def process_query(collection_name, query):
  297. try:
  298. result = query_doc_with_hybrid_search(
  299. collection_name=collection_name,
  300. collection_result=collection_results[collection_name],
  301. query=query,
  302. embedding_function=embedding_function,
  303. k=k,
  304. reranking_function=reranking_function,
  305. k_reranker=k_reranker,
  306. r=r,
  307. hybrid_bm25_weight=hybrid_bm25_weight,
  308. )
  309. return result, None
  310. except Exception as e:
  311. log.exception(f"Error when querying the collection with hybrid_search: {e}")
  312. return None, e
  313. # Prepare tasks for all collections and queries
  314. # Avoid running any tasks for collections that failed to fetch data (have assigned None)
  315. tasks = [
  316. (cn, q)
  317. for cn in collection_names
  318. if collection_results[cn] is not None
  319. for q in queries
  320. ]
  321. with ThreadPoolExecutor() as executor:
  322. future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]
  323. task_results = [future.result() for future in future_results]
  324. for result, err in task_results:
  325. if err is not None:
  326. error = True
  327. elif result is not None:
  328. results.append(result)
  329. if error and not results:
  330. raise Exception(
  331. "Hybrid search failed for all collections. Using Non-hybrid search as fallback."
  332. )
  333. return merge_and_sort_query_results(results, k=k)
  334. def get_embedding_function(
  335. embedding_engine,
  336. embedding_model,
  337. embedding_function,
  338. url,
  339. key,
  340. embedding_batch_size,
  341. azure_api_version=None,
  342. ):
  343. if embedding_engine == "":
  344. return lambda query, prefix=None, user=None: embedding_function.encode(
  345. query, **({"prompt": prefix} if prefix else {})
  346. ).tolist()
  347. elif embedding_engine in ["ollama", "openai", "azure_openai"]:
  348. func = lambda query, prefix=None, user=None: generate_embeddings(
  349. engine=embedding_engine,
  350. model=embedding_model,
  351. text=query,
  352. prefix=prefix,
  353. url=url,
  354. key=key,
  355. user=user,
  356. azure_api_version=azure_api_version,
  357. )
  358. def generate_multiple(query, prefix, user, func):
  359. if isinstance(query, list):
  360. embeddings = []
  361. for i in range(0, len(query), embedding_batch_size):
  362. batch_embeddings = func(
  363. query[i : i + embedding_batch_size],
  364. prefix=prefix,
  365. user=user,
  366. )
  367. if isinstance(batch_embeddings, list):
  368. embeddings.extend(batch_embeddings)
  369. return embeddings
  370. else:
  371. return func(query, prefix, user)
  372. return lambda query, prefix=None, user=None: generate_multiple(
  373. query, prefix, user, func
  374. )
  375. else:
  376. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  377. def get_reranking_function(reranking_engine, reranking_model, reranking_function):
  378. if reranking_function is None:
  379. return None
  380. if reranking_engine == "external":
  381. return lambda sentences, user=None: reranking_function.predict(
  382. sentences, user=user
  383. )
  384. else:
  385. return lambda sentences, user=None: reranking_function.predict(sentences)
  386. def get_sources_from_items(
  387. request,
  388. items,
  389. queries,
  390. embedding_function,
  391. k,
  392. reranking_function,
  393. k_reranker,
  394. r,
  395. hybrid_bm25_weight,
  396. hybrid_search,
  397. full_context=False,
  398. user: Optional[UserModel] = None,
  399. ):
  400. log.debug(
  401. f"items: {items} {queries} {embedding_function} {reranking_function} {full_context}"
  402. )
  403. extracted_collections = []
  404. query_results = []
  405. for item in items:
  406. query_result = None
  407. collection_names = []
  408. if item.get("type") == "text":
  409. # Raw Text
  410. # Used during temporary chat file uploads or web page & youtube attachements
  411. if item.get("context") == "full":
  412. if item.get("file"):
  413. # if item has file data, use it
  414. query_result = {
  415. "documents": [
  416. [item.get("file", {}).get("data", {}).get("content")]
  417. ],
  418. "metadatas": [[item.get("file", {}).get("meta", {})]],
  419. }
  420. if query_result is None:
  421. # Fallback
  422. if item.get("collection_name"):
  423. # If item has a collection name, use it
  424. collection_names.append(item.get("collection_name"))
  425. elif item.get("file"):
  426. # If item has file data, use it
  427. query_result = {
  428. "documents": [
  429. [item.get("file", {}).get("data", {}).get("content")]
  430. ],
  431. "metadatas": [[item.get("file", {}).get("meta", {})]],
  432. }
  433. else:
  434. # Fallback to item content
  435. query_result = {
  436. "documents": [[item.get("content")]],
  437. "metadatas": [
  438. [{"file_id": item.get("id"), "name": item.get("name")}]
  439. ],
  440. }
  441. elif item.get("type") == "note":
  442. # Note Attached
  443. note = Notes.get_note_by_id(item.get("id"))
  444. if note and (
  445. user.role == "admin"
  446. or note.user_id == user.id
  447. or has_access(user.id, "read", note.access_control)
  448. ):
  449. # User has access to the note
  450. query_result = {
  451. "documents": [[note.data.get("content", {}).get("md", "")]],
  452. "metadatas": [[{"file_id": note.id, "name": note.title}]],
  453. }
  454. elif item.get("type") == "chat":
  455. # Chat Attached
  456. chat = Chats.get_chat_by_id(item.get("id"))
  457. if chat and (user.role == "admin" or chat.user_id == user.id):
  458. messages_map = chat.chat.get("history", {}).get("messages", {})
  459. message_id = chat.chat.get("history", {}).get("currentId")
  460. if messages_map and message_id:
  461. # Reconstruct the message list in order
  462. message_list = get_message_list(messages_map, message_id)
  463. message_history = "\n".join(
  464. [
  465. f"#### {m.get('role', 'user').capitalize()}\n{m.get('content')}\n\n"
  466. for m in message_list
  467. ]
  468. )
  469. # User has access to the chat
  470. query_result = {
  471. "documents": [[message_history]],
  472. "metadatas": [[{"file_id": chat.id, "name": chat.title}]],
  473. }
  474. elif item.get("type") == "file":
  475. if (
  476. item.get("context") == "full"
  477. or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  478. ):
  479. if item.get("file", {}).get("data", {}).get("content", ""):
  480. # Manual Full Mode Toggle
  481. # Used from chat file modal, we can assume that the file content will be available from item.get("file").get("data", {}).get("content")
  482. query_result = {
  483. "documents": [
  484. [item.get("file", {}).get("data", {}).get("content", "")]
  485. ],
  486. "metadatas": [
  487. [
  488. {
  489. "file_id": item.get("id"),
  490. "name": item.get("name"),
  491. **item.get("file")
  492. .get("data", {})
  493. .get("metadata", {}),
  494. }
  495. ]
  496. ],
  497. }
  498. elif item.get("id"):
  499. file_object = Files.get_file_by_id(item.get("id"))
  500. if file_object:
  501. query_result = {
  502. "documents": [[file_object.data.get("content", "")]],
  503. "metadatas": [
  504. [
  505. {
  506. "file_id": item.get("id"),
  507. "name": file_object.filename,
  508. "source": file_object.filename,
  509. }
  510. ]
  511. ],
  512. }
  513. else:
  514. # Fallback to collection names
  515. if item.get("legacy"):
  516. collection_names.append(f"{item['id']}")
  517. else:
  518. collection_names.append(f"file-{item['id']}")
  519. elif item.get("type") == "collection":
  520. if (
  521. item.get("context") == "full"
  522. or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  523. ):
  524. # Manual Full Mode Toggle for Collection
  525. knowledge_base = Knowledges.get_knowledge_by_id(item.get("id"))
  526. if knowledge_base and (
  527. user.role == "admin"
  528. or has_access(user.id, "read", knowledge_base.access_control)
  529. ):
  530. file_ids = knowledge_base.data.get("file_ids", [])
  531. documents = []
  532. metadatas = []
  533. for file_id in file_ids:
  534. file_object = Files.get_file_by_id(file_id)
  535. if file_object:
  536. documents.append(file_object.data.get("content", ""))
  537. metadatas.append(
  538. {
  539. "file_id": file_id,
  540. "name": file_object.filename,
  541. "source": file_object.filename,
  542. }
  543. )
  544. query_result = {
  545. "documents": [documents],
  546. "metadatas": [metadatas],
  547. }
  548. else:
  549. # Fallback to collection names
  550. if item.get("legacy"):
  551. collection_names = item.get("collection_names", [])
  552. else:
  553. collection_names.append(item["id"])
  554. elif item.get("docs"):
  555. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  556. query_result = {
  557. "documents": [[doc.get("content") for doc in item.get("docs")]],
  558. "metadatas": [[doc.get("metadata") for doc in item.get("docs")]],
  559. }
  560. elif item.get("collection_name"):
  561. # Direct Collection Name
  562. collection_names.append(item["collection_name"])
  563. elif item.get("collection_names"):
  564. # Collection Names List
  565. collection_names.extend(item["collection_names"])
  566. # If query_result is None
  567. # Fallback to collection names and vector search the collections
  568. if query_result is None and collection_names:
  569. collection_names = set(collection_names).difference(extracted_collections)
  570. if not collection_names:
  571. log.debug(f"skipping {item} as it has already been extracted")
  572. continue
  573. try:
  574. if full_context:
  575. query_result = get_all_items_from_collections(collection_names)
  576. else:
  577. query_result = None # Initialize to None
  578. if hybrid_search:
  579. try:
  580. query_result = query_collection_with_hybrid_search(
  581. collection_names=collection_names,
  582. queries=queries,
  583. embedding_function=embedding_function,
  584. k=k,
  585. reranking_function=reranking_function,
  586. k_reranker=k_reranker,
  587. r=r,
  588. hybrid_bm25_weight=hybrid_bm25_weight,
  589. )
  590. except Exception as e:
  591. log.debug(
  592. "Error when using hybrid search, using non hybrid search as fallback."
  593. )
  594. # fallback to non-hybrid search
  595. if not hybrid_search and query_result is None:
  596. query_result = query_collection(
  597. collection_names=collection_names,
  598. queries=queries,
  599. embedding_function=embedding_function,
  600. k=k,
  601. )
  602. except Exception as e:
  603. log.exception(e)
  604. extracted_collections.extend(collection_names)
  605. if query_result:
  606. if "data" in item:
  607. del item["data"]
  608. query_results.append({**query_result, "file": item})
  609. sources = []
  610. for query_result in query_results:
  611. try:
  612. if "documents" in query_result:
  613. if "metadatas" in query_result:
  614. source = {
  615. "source": query_result["file"],
  616. "document": query_result["documents"][0],
  617. "metadata": query_result["metadatas"][0],
  618. }
  619. if "distances" in query_result and query_result["distances"]:
  620. source["distances"] = query_result["distances"][0]
  621. sources.append(source)
  622. except Exception as e:
  623. log.exception(e)
  624. return sources
  625. def get_model_path(model: str, update_model: bool = False):
  626. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  627. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  628. local_files_only = not update_model
  629. if OFFLINE_MODE:
  630. local_files_only = True
  631. snapshot_kwargs = {
  632. "cache_dir": cache_dir,
  633. "local_files_only": local_files_only,
  634. }
  635. log.debug(f"model: {model}")
  636. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  637. # Inspiration from upstream sentence_transformers
  638. if (
  639. os.path.exists(model)
  640. or ("\\" in model or model.count("/") > 1)
  641. and local_files_only
  642. ):
  643. # If fully qualified path exists, return input, else set repo_id
  644. return model
  645. elif "/" not in model:
  646. # Set valid repo_id for model short-name
  647. model = "sentence-transformers" + "/" + model
  648. snapshot_kwargs["repo_id"] = model
  649. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  650. try:
  651. model_repo_path = snapshot_download(**snapshot_kwargs)
  652. log.debug(f"model_repo_path: {model_repo_path}")
  653. return model_repo_path
  654. except Exception as e:
  655. log.exception(f"Cannot determine model snapshot path: {e}")
  656. return model
  657. def generate_openai_batch_embeddings(
  658. model: str,
  659. texts: list[str],
  660. url: str = "https://api.openai.com/v1",
  661. key: str = "",
  662. prefix: str = None,
  663. user: UserModel = None,
  664. ) -> Optional[list[list[float]]]:
  665. try:
  666. log.debug(
  667. f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
  668. )
  669. json_data = {"input": texts, "model": model}
  670. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  671. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  672. r = requests.post(
  673. f"{url}/embeddings",
  674. headers={
  675. "Content-Type": "application/json",
  676. "Authorization": f"Bearer {key}",
  677. **(
  678. {
  679. "X-OpenWebUI-User-Name": quote(user.name, safe=" "),
  680. "X-OpenWebUI-User-Id": user.id,
  681. "X-OpenWebUI-User-Email": user.email,
  682. "X-OpenWebUI-User-Role": user.role,
  683. }
  684. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  685. else {}
  686. ),
  687. },
  688. json=json_data,
  689. )
  690. r.raise_for_status()
  691. data = r.json()
  692. if "data" in data:
  693. return [elem["embedding"] for elem in data["data"]]
  694. else:
  695. raise "Something went wrong :/"
  696. except Exception as e:
  697. log.exception(f"Error generating openai batch embeddings: {e}")
  698. return None
  699. def generate_azure_openai_batch_embeddings(
  700. model: str,
  701. texts: list[str],
  702. url: str,
  703. key: str = "",
  704. version: str = "",
  705. prefix: str = None,
  706. user: UserModel = None,
  707. ) -> Optional[list[list[float]]]:
  708. try:
  709. log.debug(
  710. f"generate_azure_openai_batch_embeddings:deployment {model} batch size: {len(texts)}"
  711. )
  712. json_data = {"input": texts}
  713. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  714. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  715. url = f"{url}/openai/deployments/{model}/embeddings?api-version={version}"
  716. for _ in range(5):
  717. r = requests.post(
  718. url,
  719. headers={
  720. "Content-Type": "application/json",
  721. "api-key": key,
  722. **(
  723. {
  724. "X-OpenWebUI-User-Name": quote(user.name, safe=" "),
  725. "X-OpenWebUI-User-Id": user.id,
  726. "X-OpenWebUI-User-Email": user.email,
  727. "X-OpenWebUI-User-Role": user.role,
  728. }
  729. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  730. else {}
  731. ),
  732. },
  733. json=json_data,
  734. )
  735. if r.status_code == 429:
  736. retry = float(r.headers.get("Retry-After", "1"))
  737. time.sleep(retry)
  738. continue
  739. r.raise_for_status()
  740. data = r.json()
  741. if "data" in data:
  742. return [elem["embedding"] for elem in data["data"]]
  743. else:
  744. raise Exception("Something went wrong :/")
  745. return None
  746. except Exception as e:
  747. log.exception(f"Error generating azure openai batch embeddings: {e}")
  748. return None
  749. def generate_ollama_batch_embeddings(
  750. model: str,
  751. texts: list[str],
  752. url: str,
  753. key: str = "",
  754. prefix: str = None,
  755. user: UserModel = None,
  756. ) -> Optional[list[list[float]]]:
  757. try:
  758. log.debug(
  759. f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
  760. )
  761. json_data = {"input": texts, "model": model}
  762. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  763. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  764. r = requests.post(
  765. f"{url}/api/embed",
  766. headers={
  767. "Content-Type": "application/json",
  768. "Authorization": f"Bearer {key}",
  769. **(
  770. {
  771. "X-OpenWebUI-User-Name": quote(user.name, safe=" "),
  772. "X-OpenWebUI-User-Id": user.id,
  773. "X-OpenWebUI-User-Email": user.email,
  774. "X-OpenWebUI-User-Role": user.role,
  775. }
  776. if ENABLE_FORWARD_USER_INFO_HEADERS
  777. else {}
  778. ),
  779. },
  780. json=json_data,
  781. )
  782. r.raise_for_status()
  783. data = r.json()
  784. if "embeddings" in data:
  785. return data["embeddings"]
  786. else:
  787. raise "Something went wrong :/"
  788. except Exception as e:
  789. log.exception(f"Error generating ollama batch embeddings: {e}")
  790. return None
  791. def generate_embeddings(
  792. engine: str,
  793. model: str,
  794. text: Union[str, list[str]],
  795. prefix: Union[str, None] = None,
  796. **kwargs,
  797. ):
  798. url = kwargs.get("url", "")
  799. key = kwargs.get("key", "")
  800. user = kwargs.get("user")
  801. if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
  802. if isinstance(text, list):
  803. text = [f"{prefix}{text_element}" for text_element in text]
  804. else:
  805. text = f"{prefix}{text}"
  806. if engine == "ollama":
  807. embeddings = generate_ollama_batch_embeddings(
  808. **{
  809. "model": model,
  810. "texts": text if isinstance(text, list) else [text],
  811. "url": url,
  812. "key": key,
  813. "prefix": prefix,
  814. "user": user,
  815. }
  816. )
  817. return embeddings[0] if isinstance(text, str) else embeddings
  818. elif engine == "openai":
  819. embeddings = generate_openai_batch_embeddings(
  820. model, text if isinstance(text, list) else [text], url, key, prefix, user
  821. )
  822. return embeddings[0] if isinstance(text, str) else embeddings
  823. elif engine == "azure_openai":
  824. azure_api_version = kwargs.get("azure_api_version", "")
  825. embeddings = generate_azure_openai_batch_embeddings(
  826. model,
  827. text if isinstance(text, list) else [text],
  828. url,
  829. key,
  830. azure_api_version,
  831. prefix,
  832. user,
  833. )
  834. return embeddings[0] if isinstance(text, str) else embeddings
  835. import operator
  836. from typing import Optional, Sequence
  837. from langchain_core.callbacks import Callbacks
  838. from langchain_core.documents import BaseDocumentCompressor, Document
  839. class RerankCompressor(BaseDocumentCompressor):
  840. embedding_function: Any
  841. top_n: int
  842. reranking_function: Any
  843. r_score: float
  844. class Config:
  845. extra = "forbid"
  846. arbitrary_types_allowed = True
  847. def compress_documents(
  848. self,
  849. documents: Sequence[Document],
  850. query: str,
  851. callbacks: Optional[Callbacks] = None,
  852. ) -> Sequence[Document]:
  853. reranking = self.reranking_function is not None
  854. scores = None
  855. if reranking:
  856. scores = self.reranking_function(
  857. [(query, doc.page_content) for doc in documents]
  858. )
  859. else:
  860. from sentence_transformers import util
  861. query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  862. document_embedding = self.embedding_function(
  863. [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
  864. )
  865. scores = util.cos_sim(query_embedding, document_embedding)[0]
  866. if scores is not None:
  867. docs_with_scores = list(
  868. zip(
  869. documents,
  870. scores.tolist() if not isinstance(scores, list) else scores,
  871. )
  872. )
  873. if self.r_score:
  874. docs_with_scores = [
  875. (d, s) for d, s in docs_with_scores if s >= self.r_score
  876. ]
  877. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  878. final_results = []
  879. for doc, doc_score in result[: self.top_n]:
  880. metadata = doc.metadata
  881. metadata["score"] = doc_score
  882. doc = Document(
  883. page_content=doc.page_content,
  884. metadata=metadata,
  885. )
  886. final_results.append(doc)
  887. return final_results
  888. else:
  889. log.warning(
  890. "No valid scores found, check your reranking function. Returning original documents."
  891. )
  892. return documents