utils.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. import hashlib
  6. from concurrent.futures import ThreadPoolExecutor
  7. import time
  8. from urllib.parse import quote
  9. from huggingface_hub import snapshot_download
  10. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain_core.documents import Document
  13. from open_webui.config import VECTOR_DB
  14. from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT
  15. from open_webui.models.users import UserModel
  16. from open_webui.models.files import Files
  17. from open_webui.retrieval.vector.main import GetResult
  18. from open_webui.env import (
  19. SRC_LOG_LEVELS,
  20. OFFLINE_MODE,
  21. ENABLE_FORWARD_USER_INFO_HEADERS,
  22. )
  23. from open_webui.config import (
  24. RAG_EMBEDDING_QUERY_PREFIX,
  25. RAG_EMBEDDING_CONTENT_PREFIX,
  26. RAG_EMBEDDING_PREFIX_FIELD_NAME,
  27. )
  28. log = logging.getLogger(__name__)
  29. log.setLevel(SRC_LOG_LEVELS["RAG"])
  30. from typing import Any
  31. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  32. from langchain_core.retrievers import BaseRetriever
  33. class VectorSearchRetriever(BaseRetriever):
  34. collection_name: Any
  35. embedding_function: Any
  36. top_k: int
  37. def _get_relevant_documents(
  38. self,
  39. query: str,
  40. *,
  41. run_manager: CallbackManagerForRetrieverRun,
  42. ) -> list[Document]:
  43. result = VECTOR_DB_CLIENT.search(
  44. collection_name=self.collection_name,
  45. vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],
  46. limit=self.top_k,
  47. )
  48. ids = result.ids[0]
  49. metadatas = result.metadatas[0]
  50. documents = result.documents[0]
  51. results = []
  52. for idx in range(len(ids)):
  53. results.append(
  54. Document(
  55. metadata=metadatas[idx],
  56. page_content=documents[idx],
  57. )
  58. )
  59. return results
  60. def query_doc(
  61. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  62. ):
  63. try:
  64. log.debug(f"query_doc:doc {collection_name}")
  65. result = VECTOR_DB_CLIENT.search(
  66. collection_name=collection_name,
  67. vectors=[query_embedding],
  68. limit=k,
  69. )
  70. if result:
  71. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  72. return result
  73. except Exception as e:
  74. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  75. raise e
  76. def get_doc(collection_name: str, user: UserModel = None):
  77. try:
  78. log.debug(f"get_doc:doc {collection_name}")
  79. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  80. if result:
  81. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  82. return result
  83. except Exception as e:
  84. log.exception(f"Error getting doc {collection_name}: {e}")
  85. raise e
  86. def query_doc_with_hybrid_search(
  87. collection_name: str,
  88. collection_result: GetResult,
  89. query: str,
  90. embedding_function,
  91. k: int,
  92. reranking_function,
  93. k_reranker: int,
  94. r: float,
  95. hybrid_bm25_weight: float,
  96. ) -> dict:
  97. try:
  98. log.debug(f"query_doc_with_hybrid_search:doc {collection_name}")
  99. bm25_retriever = BM25Retriever.from_texts(
  100. texts=collection_result.documents[0],
  101. metadatas=collection_result.metadatas[0],
  102. )
  103. bm25_retriever.k = k
  104. vector_search_retriever = VectorSearchRetriever(
  105. collection_name=collection_name,
  106. embedding_function=embedding_function,
  107. top_k=k,
  108. )
  109. if hybrid_bm25_weight <= 0:
  110. ensemble_retriever = EnsembleRetriever(
  111. retrievers=[vector_search_retriever], weights=[1.0]
  112. )
  113. elif hybrid_bm25_weight >= 1:
  114. ensemble_retriever = EnsembleRetriever(
  115. retrievers=[bm25_retriever], weights=[1.0]
  116. )
  117. else:
  118. ensemble_retriever = EnsembleRetriever(
  119. retrievers=[bm25_retriever, vector_search_retriever],
  120. weights=[hybrid_bm25_weight, 1.0 - hybrid_bm25_weight],
  121. )
  122. compressor = RerankCompressor(
  123. embedding_function=embedding_function,
  124. top_n=k_reranker,
  125. reranking_function=reranking_function,
  126. r_score=r,
  127. )
  128. compression_retriever = ContextualCompressionRetriever(
  129. base_compressor=compressor, base_retriever=ensemble_retriever
  130. )
  131. result = compression_retriever.invoke(query)
  132. distances = [d.metadata.get("score") for d in result]
  133. documents = [d.page_content for d in result]
  134. metadatas = [d.metadata for d in result]
  135. # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
  136. if k < k_reranker:
  137. sorted_items = sorted(
  138. zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
  139. )
  140. sorted_items = sorted_items[:k]
  141. distances, documents, metadatas = map(list, zip(*sorted_items))
  142. result = {
  143. "distances": [distances],
  144. "documents": [documents],
  145. "metadatas": [metadatas],
  146. }
  147. log.info(
  148. "query_doc_with_hybrid_search:result "
  149. + f'{result["metadatas"]} {result["distances"]}'
  150. )
  151. return result
  152. except Exception as e:
  153. log.exception(f"Error querying doc {collection_name} with hybrid search: {e}")
  154. raise e
  155. def merge_get_results(get_results: list[dict]) -> dict:
  156. # Initialize lists to store combined data
  157. combined_documents = []
  158. combined_metadatas = []
  159. combined_ids = []
  160. for data in get_results:
  161. combined_documents.extend(data["documents"][0])
  162. combined_metadatas.extend(data["metadatas"][0])
  163. combined_ids.extend(data["ids"][0])
  164. # Create the output dictionary
  165. result = {
  166. "documents": [combined_documents],
  167. "metadatas": [combined_metadatas],
  168. "ids": [combined_ids],
  169. }
  170. return result
  171. def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
  172. # Initialize lists to store combined data
  173. combined = dict() # To store documents with unique document hashes
  174. for data in query_results:
  175. distances = data["distances"][0]
  176. documents = data["documents"][0]
  177. metadatas = data["metadatas"][0]
  178. for distance, document, metadata in zip(distances, documents, metadatas):
  179. if isinstance(document, str):
  180. doc_hash = hashlib.sha256(
  181. document.encode()
  182. ).hexdigest() # Compute a hash for uniqueness
  183. if doc_hash not in combined.keys():
  184. combined[doc_hash] = (distance, document, metadata)
  185. continue # if doc is new, no further comparison is needed
  186. # if doc is alredy in, but new distance is better, update
  187. if distance > combined[doc_hash][0]:
  188. combined[doc_hash] = (distance, document, metadata)
  189. combined = list(combined.values())
  190. # Sort the list based on distances
  191. combined.sort(key=lambda x: x[0], reverse=True)
  192. # Slice to keep only the top k elements
  193. sorted_distances, sorted_documents, sorted_metadatas = (
  194. zip(*combined[:k]) if combined else ([], [], [])
  195. )
  196. # Create and return the output dictionary
  197. return {
  198. "distances": [list(sorted_distances)],
  199. "documents": [list(sorted_documents)],
  200. "metadatas": [list(sorted_metadatas)],
  201. }
  202. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  203. results = []
  204. for collection_name in collection_names:
  205. if collection_name:
  206. try:
  207. result = get_doc(collection_name=collection_name)
  208. if result is not None:
  209. results.append(result.model_dump())
  210. except Exception as e:
  211. log.exception(f"Error when querying the collection: {e}")
  212. else:
  213. pass
  214. return merge_get_results(results)
  215. def query_collection(
  216. collection_names: list[str],
  217. queries: list[str],
  218. embedding_function,
  219. k: int,
  220. ) -> dict:
  221. results = []
  222. error = False
  223. def process_query_collection(collection_name, query_embedding):
  224. try:
  225. if collection_name:
  226. result = query_doc(
  227. collection_name=collection_name,
  228. k=k,
  229. query_embedding=query_embedding,
  230. )
  231. if result is not None:
  232. return result.model_dump(), None
  233. return None, None
  234. except Exception as e:
  235. log.exception(f"Error when querying the collection: {e}")
  236. return None, e
  237. # Generate all query embeddings (in one call)
  238. query_embeddings = embedding_function(queries, prefix=RAG_EMBEDDING_QUERY_PREFIX)
  239. log.debug(
  240. f"query_collection: processing {len(queries)} queries across {len(collection_names)} collections"
  241. )
  242. with ThreadPoolExecutor() as executor:
  243. future_results = []
  244. for query_embedding in query_embeddings:
  245. for collection_name in collection_names:
  246. result = executor.submit(
  247. process_query_collection, collection_name, query_embedding
  248. )
  249. future_results.append(result)
  250. task_results = [future.result() for future in future_results]
  251. for result, err in task_results:
  252. if err is not None:
  253. error = True
  254. elif result is not None:
  255. results.append(result)
  256. if error and not results:
  257. log.warning("All collection queries failed. No results returned.")
  258. return merge_and_sort_query_results(results, k=k)
  259. def query_collection_with_hybrid_search(
  260. collection_names: list[str],
  261. queries: list[str],
  262. embedding_function,
  263. k: int,
  264. reranking_function,
  265. k_reranker: int,
  266. r: float,
  267. hybrid_bm25_weight: float,
  268. ) -> dict:
  269. results = []
  270. error = False
  271. # Fetch collection data once per collection sequentially
  272. # Avoid fetching the same data multiple times later
  273. collection_results = {}
  274. for collection_name in collection_names:
  275. try:
  276. log.debug(
  277. f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}"
  278. )
  279. collection_results[collection_name] = VECTOR_DB_CLIENT.get(
  280. collection_name=collection_name
  281. )
  282. except Exception as e:
  283. log.exception(f"Failed to fetch collection {collection_name}: {e}")
  284. collection_results[collection_name] = None
  285. log.info(
  286. f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
  287. )
  288. def process_query(collection_name, query):
  289. try:
  290. result = query_doc_with_hybrid_search(
  291. collection_name=collection_name,
  292. collection_result=collection_results[collection_name],
  293. query=query,
  294. embedding_function=embedding_function,
  295. k=k,
  296. reranking_function=reranking_function,
  297. k_reranker=k_reranker,
  298. r=r,
  299. hybrid_bm25_weight=hybrid_bm25_weight,
  300. )
  301. return result, None
  302. except Exception as e:
  303. log.exception(f"Error when querying the collection with hybrid_search: {e}")
  304. return None, e
  305. # Prepare tasks for all collections and queries
  306. # Avoid running any tasks for collections that failed to fetch data (have assigned None)
  307. tasks = [
  308. (cn, q)
  309. for cn in collection_names
  310. if collection_results[cn] is not None
  311. for q in queries
  312. ]
  313. with ThreadPoolExecutor() as executor:
  314. future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]
  315. task_results = [future.result() for future in future_results]
  316. for result, err in task_results:
  317. if err is not None:
  318. error = True
  319. elif result is not None:
  320. results.append(result)
  321. if error and not results:
  322. raise Exception(
  323. "Hybrid search failed for all collections. Using Non-hybrid search as fallback."
  324. )
  325. return merge_and_sort_query_results(results, k=k)
  326. def get_embedding_function(
  327. embedding_engine,
  328. embedding_model,
  329. embedding_function,
  330. url,
  331. key,
  332. embedding_batch_size,
  333. azure_api_version=None,
  334. ):
  335. if embedding_engine == "":
  336. return lambda query, prefix=None, user=None: embedding_function.encode(
  337. query, **({"prompt": prefix} if prefix else {})
  338. ).tolist()
  339. elif embedding_engine in ["ollama", "openai", "azure_openai"]:
  340. func = lambda query, prefix=None, user=None: generate_embeddings(
  341. engine=embedding_engine,
  342. model=embedding_model,
  343. text=query,
  344. prefix=prefix,
  345. url=url,
  346. key=key,
  347. user=user,
  348. azure_api_version=azure_api_version,
  349. )
  350. def generate_multiple(query, prefix, user, func):
  351. if isinstance(query, list):
  352. embeddings = []
  353. for i in range(0, len(query), embedding_batch_size):
  354. embeddings.extend(
  355. func(
  356. query[i : i + embedding_batch_size],
  357. prefix=prefix,
  358. user=user,
  359. )
  360. )
  361. return embeddings
  362. else:
  363. return func(query, prefix, user)
  364. return lambda query, prefix=None, user=None: generate_multiple(
  365. query, prefix, user, func
  366. )
  367. else:
  368. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  369. def get_sources_from_files(
  370. request,
  371. files,
  372. queries,
  373. embedding_function,
  374. k,
  375. reranking_function,
  376. k_reranker,
  377. r,
  378. hybrid_bm25_weight,
  379. hybrid_search,
  380. full_context=False,
  381. ):
  382. log.debug(
  383. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  384. )
  385. extracted_collections = []
  386. query_results = []
  387. for file in files:
  388. query_result = None
  389. if file.get("docs"):
  390. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  391. query_result = {
  392. "documents": [[doc.get("content") for doc in file.get("docs")]],
  393. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  394. }
  395. elif file.get("context") == "full":
  396. # Manual Full Mode Toggle
  397. query_result = {
  398. "documents": [[file.get("file").get("data", {}).get("content")]],
  399. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  400. }
  401. elif (
  402. file.get("type") != "web_search"
  403. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  404. ):
  405. # BYPASS_EMBEDDING_AND_RETRIEVAL
  406. if file.get("type") == "collection":
  407. file_ids = file.get("data", {}).get("file_ids", [])
  408. documents = []
  409. metadatas = []
  410. for file_id in file_ids:
  411. file_object = Files.get_file_by_id(file_id)
  412. if file_object:
  413. documents.append(file_object.data.get("content", ""))
  414. metadatas.append(
  415. {
  416. "file_id": file_id,
  417. "name": file_object.filename,
  418. "source": file_object.filename,
  419. }
  420. )
  421. query_result = {
  422. "documents": [documents],
  423. "metadatas": [metadatas],
  424. }
  425. elif file.get("id"):
  426. file_object = Files.get_file_by_id(file.get("id"))
  427. if file_object:
  428. query_result = {
  429. "documents": [[file_object.data.get("content", "")]],
  430. "metadatas": [
  431. [
  432. {
  433. "file_id": file.get("id"),
  434. "name": file_object.filename,
  435. "source": file_object.filename,
  436. }
  437. ]
  438. ],
  439. }
  440. elif file.get("file").get("data"):
  441. query_result = {
  442. "documents": [[file.get("file").get("data", {}).get("content")]],
  443. "metadatas": [
  444. [file.get("file").get("data", {}).get("metadata", {})]
  445. ],
  446. }
  447. else:
  448. collection_names = []
  449. if file.get("type") == "collection":
  450. if file.get("legacy"):
  451. collection_names = file.get("collection_names", [])
  452. else:
  453. collection_names.append(file["id"])
  454. elif file.get("collection_name"):
  455. collection_names.append(file["collection_name"])
  456. elif file.get("id"):
  457. if file.get("legacy"):
  458. collection_names.append(f"{file['id']}")
  459. else:
  460. collection_names.append(f"file-{file['id']}")
  461. collection_names = set(collection_names).difference(extracted_collections)
  462. if not collection_names:
  463. log.debug(f"skipping {file} as it has already been extracted")
  464. continue
  465. if full_context:
  466. try:
  467. query_result = get_all_items_from_collections(collection_names)
  468. except Exception as e:
  469. log.exception(e)
  470. else:
  471. try:
  472. query_result = None
  473. if file.get("type") == "text":
  474. # Not sure when this is used, but it seems to be a fallback
  475. query_result = {
  476. "documents": [
  477. [file.get("file").get("data", {}).get("content")]
  478. ],
  479. "metadatas": [
  480. [file.get("file").get("data", {}).get("meta", {})]
  481. ],
  482. }
  483. else:
  484. if hybrid_search:
  485. try:
  486. query_result = query_collection_with_hybrid_search(
  487. collection_names=collection_names,
  488. queries=queries,
  489. embedding_function=embedding_function,
  490. k=k,
  491. reranking_function=reranking_function,
  492. k_reranker=k_reranker,
  493. r=r,
  494. hybrid_bm25_weight=hybrid_bm25_weight,
  495. )
  496. except Exception as e:
  497. log.debug(
  498. "Error when using hybrid search, using"
  499. " non hybrid search as fallback."
  500. )
  501. if (not hybrid_search) or (query_result is None):
  502. query_result = query_collection(
  503. collection_names=collection_names,
  504. queries=queries,
  505. embedding_function=embedding_function,
  506. k=k,
  507. )
  508. except Exception as e:
  509. log.exception(e)
  510. extracted_collections.extend(collection_names)
  511. if query_result:
  512. if "data" in file:
  513. del file["data"]
  514. query_results.append({**query_result, "file": file})
  515. sources = []
  516. for query_result in query_results:
  517. try:
  518. if "documents" in query_result:
  519. if "metadatas" in query_result:
  520. source = {
  521. "source": query_result["file"],
  522. "document": query_result["documents"][0],
  523. "metadata": query_result["metadatas"][0],
  524. }
  525. if "distances" in query_result and query_result["distances"]:
  526. source["distances"] = query_result["distances"][0]
  527. sources.append(source)
  528. except Exception as e:
  529. log.exception(e)
  530. return sources
  531. def get_model_path(model: str, update_model: bool = False):
  532. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  533. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  534. local_files_only = not update_model
  535. if OFFLINE_MODE:
  536. local_files_only = True
  537. snapshot_kwargs = {
  538. "cache_dir": cache_dir,
  539. "local_files_only": local_files_only,
  540. }
  541. log.debug(f"model: {model}")
  542. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  543. # Inspiration from upstream sentence_transformers
  544. if (
  545. os.path.exists(model)
  546. or ("\\" in model or model.count("/") > 1)
  547. and local_files_only
  548. ):
  549. # If fully qualified path exists, return input, else set repo_id
  550. return model
  551. elif "/" not in model:
  552. # Set valid repo_id for model short-name
  553. model = "sentence-transformers" + "/" + model
  554. snapshot_kwargs["repo_id"] = model
  555. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  556. try:
  557. model_repo_path = snapshot_download(**snapshot_kwargs)
  558. log.debug(f"model_repo_path: {model_repo_path}")
  559. return model_repo_path
  560. except Exception as e:
  561. log.exception(f"Cannot determine model snapshot path: {e}")
  562. return model
  563. def generate_openai_batch_embeddings(
  564. model: str,
  565. texts: list[str],
  566. url: str = "https://api.openai.com/v1",
  567. key: str = "",
  568. prefix: str = None,
  569. user: UserModel = None,
  570. ) -> Optional[list[list[float]]]:
  571. try:
  572. log.debug(
  573. f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
  574. )
  575. json_data = {"input": texts, "model": model}
  576. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  577. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  578. r = requests.post(
  579. f"{url}/embeddings",
  580. headers={
  581. "Content-Type": "application/json",
  582. "Authorization": f"Bearer {key}",
  583. **(
  584. {
  585. "X-OpenWebUI-User-Name": quote(user.name),
  586. "X-OpenWebUI-User-Id": quote(user.id),
  587. "X-OpenWebUI-User-Email": quote(user.email),
  588. "X-OpenWebUI-User-Role": quote(user.role),
  589. }
  590. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  591. else {}
  592. ),
  593. },
  594. json=json_data,
  595. )
  596. r.raise_for_status()
  597. data = r.json()
  598. if "data" in data:
  599. return [elem["embedding"] for elem in data["data"]]
  600. else:
  601. raise "Something went wrong :/"
  602. except Exception as e:
  603. log.exception(f"Error generating openai batch embeddings: {e}")
  604. return None
  605. def generate_azure_openai_batch_embeddings(
  606. model: str,
  607. texts: list[str],
  608. url: str,
  609. key: str = "",
  610. version: str = "",
  611. prefix: str = None,
  612. user: UserModel = None,
  613. ) -> Optional[list[list[float]]]:
  614. try:
  615. log.debug(
  616. f"generate_azure_openai_batch_embeddings:deployment {model} batch size: {len(texts)}"
  617. )
  618. json_data = {"input": texts}
  619. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  620. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  621. url = f"{url}/openai/deployments/{model}/embeddings?api-version={version}"
  622. for _ in range(5):
  623. r = requests.post(
  624. url,
  625. headers={
  626. "Content-Type": "application/json",
  627. "api-key": key,
  628. **(
  629. {
  630. "X-OpenWebUI-User-Name": quote(user.name),
  631. "X-OpenWebUI-User-Id": quote(user.id),
  632. "X-OpenWebUI-User-Email": quote(user.email),
  633. "X-OpenWebUI-User-Role": quote(user.role),
  634. }
  635. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  636. else {}
  637. ),
  638. },
  639. json=json_data,
  640. )
  641. if r.status_code == 429:
  642. retry = float(r.headers.get("Retry-After", "1"))
  643. time.sleep(retry)
  644. continue
  645. r.raise_for_status()
  646. data = r.json()
  647. if "data" in data:
  648. return [elem["embedding"] for elem in data["data"]]
  649. else:
  650. raise Exception("Something went wrong :/")
  651. return None
  652. except Exception as e:
  653. log.exception(f"Error generating azure openai batch embeddings: {e}")
  654. return None
  655. def generate_ollama_batch_embeddings(
  656. model: str,
  657. texts: list[str],
  658. url: str,
  659. key: str = "",
  660. prefix: str = None,
  661. user: UserModel = None,
  662. ) -> Optional[list[list[float]]]:
  663. try:
  664. log.debug(
  665. f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
  666. )
  667. json_data = {"input": texts, "model": model}
  668. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  669. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  670. r = requests.post(
  671. f"{url}/api/embed",
  672. headers={
  673. "Content-Type": "application/json",
  674. "Authorization": f"Bearer {key}",
  675. **(
  676. {
  677. "X-OpenWebUI-User-Name": quote(user.name),
  678. "X-OpenWebUI-User-Id": quote(user.id),
  679. "X-OpenWebUI-User-Email": quote(user.email),
  680. "X-OpenWebUI-User-Role": quote(user.role),
  681. }
  682. if ENABLE_FORWARD_USER_INFO_HEADERS
  683. else {}
  684. ),
  685. },
  686. json=json_data,
  687. )
  688. r.raise_for_status()
  689. data = r.json()
  690. if "embeddings" in data:
  691. return data["embeddings"]
  692. else:
  693. raise "Something went wrong :/"
  694. except Exception as e:
  695. log.exception(f"Error generating ollama batch embeddings: {e}")
  696. return None
  697. def generate_embeddings(
  698. engine: str,
  699. model: str,
  700. text: Union[str, list[str]],
  701. prefix: Union[str, None] = None,
  702. **kwargs,
  703. ):
  704. url = kwargs.get("url", "")
  705. key = kwargs.get("key", "")
  706. user = kwargs.get("user")
  707. if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
  708. if isinstance(text, list):
  709. text = [f"{prefix}{text_element}" for text_element in text]
  710. else:
  711. text = f"{prefix}{text}"
  712. if engine == "ollama":
  713. embeddings = generate_ollama_batch_embeddings(
  714. **{
  715. "model": model,
  716. "texts": text if isinstance(text, list) else [text],
  717. "url": url,
  718. "key": key,
  719. "prefix": prefix,
  720. "user": user,
  721. }
  722. )
  723. return embeddings[0] if isinstance(text, str) else embeddings
  724. elif engine == "openai":
  725. embeddings = generate_openai_batch_embeddings(
  726. model, text if isinstance(text, list) else [text], url, key, prefix, user
  727. )
  728. return embeddings[0] if isinstance(text, str) else embeddings
  729. elif engine == "azure_openai":
  730. azure_api_version = kwargs.get("azure_api_version", "")
  731. embeddings = generate_azure_openai_batch_embeddings(
  732. model,
  733. text if isinstance(text, list) else [text],
  734. url,
  735. key,
  736. azure_api_version,
  737. prefix,
  738. user,
  739. )
  740. return embeddings[0] if isinstance(text, str) else embeddings
  741. import operator
  742. from typing import Optional, Sequence
  743. from langchain_core.callbacks import Callbacks
  744. from langchain_core.documents import BaseDocumentCompressor, Document
  745. class RerankCompressor(BaseDocumentCompressor):
  746. embedding_function: Any
  747. top_n: int
  748. reranking_function: Any
  749. r_score: float
  750. class Config:
  751. extra = "forbid"
  752. arbitrary_types_allowed = True
  753. def compress_documents(
  754. self,
  755. documents: Sequence[Document],
  756. query: str,
  757. callbacks: Optional[Callbacks] = None,
  758. ) -> Sequence[Document]:
  759. reranking = self.reranking_function is not None
  760. if reranking:
  761. scores = self.reranking_function.predict(
  762. [(query, doc.page_content) for doc in documents]
  763. )
  764. else:
  765. from sentence_transformers import util
  766. query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  767. document_embedding = self.embedding_function(
  768. [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
  769. )
  770. scores = util.cos_sim(query_embedding, document_embedding)[0]
  771. docs_with_scores = list(
  772. zip(documents, scores.tolist() if not isinstance(scores, list) else scores)
  773. )
  774. if self.r_score:
  775. docs_with_scores = [
  776. (d, s) for d, s in docs_with_scores if s >= self.r_score
  777. ]
  778. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  779. final_results = []
  780. for doc, doc_score in result[: self.top_n]:
  781. metadata = doc.metadata
  782. metadata["score"] = doc_score
  783. doc = Document(
  784. page_content=doc.page_content,
  785. metadata=metadata,
  786. )
  787. final_results.append(doc)
  788. return final_results