pgvector.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. from typing import Optional, List, Dict, Any
  2. import logging
  3. from sqlalchemy import (
  4. cast,
  5. column,
  6. create_engine,
  7. Column,
  8. Integer,
  9. MetaData,
  10. select,
  11. text,
  12. Text,
  13. Table,
  14. values,
  15. )
  16. from sqlalchemy.sql import true
  17. from sqlalchemy.pool import NullPool
  18. from sqlalchemy.orm import declarative_base, scoped_session, sessionmaker
  19. from sqlalchemy.dialects.postgresql import JSONB, array
  20. from pgvector.sqlalchemy import Vector
  21. from sqlalchemy.ext.mutable import MutableDict
  22. from sqlalchemy.exc import NoSuchTableError
  23. from open_webui.retrieval.vector.main import (
  24. VectorDBBase,
  25. VectorItem,
  26. SearchResult,
  27. GetResult,
  28. )
  29. from open_webui.config import PGVECTOR_DB_URL, PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH
  30. from open_webui.env import SRC_LOG_LEVELS
  31. VECTOR_LENGTH = PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH
  32. Base = declarative_base()
  33. log = logging.getLogger(__name__)
  34. log.setLevel(SRC_LOG_LEVELS["RAG"])
  35. class DocumentChunk(Base):
  36. __tablename__ = "document_chunk"
  37. id = Column(Text, primary_key=True)
  38. vector = Column(Vector(dim=VECTOR_LENGTH), nullable=True)
  39. collection_name = Column(Text, nullable=False)
  40. text = Column(Text, nullable=True)
  41. vmetadata = Column(MutableDict.as_mutable(JSONB), nullable=True)
  42. class PgvectorClient(VectorDBBase):
  43. def __init__(self) -> None:
  44. # if no pgvector uri, use the existing database connection
  45. if not PGVECTOR_DB_URL:
  46. from open_webui.internal.db import Session
  47. self.session = Session
  48. else:
  49. engine = create_engine(
  50. PGVECTOR_DB_URL, pool_pre_ping=True, poolclass=NullPool
  51. )
  52. SessionLocal = sessionmaker(
  53. autocommit=False, autoflush=False, bind=engine, expire_on_commit=False
  54. )
  55. self.session = scoped_session(SessionLocal)
  56. try:
  57. # Ensure the pgvector extension is available
  58. self.session.execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))
  59. # Check vector length consistency
  60. self.check_vector_length()
  61. # Create the tables if they do not exist
  62. # Base.metadata.create_all requires a bind (engine or connection)
  63. # Get the connection from the session
  64. connection = self.session.connection()
  65. Base.metadata.create_all(bind=connection)
  66. # Create an index on the vector column if it doesn't exist
  67. self.session.execute(
  68. text(
  69. "CREATE INDEX IF NOT EXISTS idx_document_chunk_vector "
  70. "ON document_chunk USING ivfflat (vector vector_cosine_ops) WITH (lists = 100);"
  71. )
  72. )
  73. self.session.execute(
  74. text(
  75. "CREATE INDEX IF NOT EXISTS idx_document_chunk_collection_name "
  76. "ON document_chunk (collection_name);"
  77. )
  78. )
  79. self.session.commit()
  80. log.info("Initialization complete.")
  81. except Exception as e:
  82. self.session.rollback()
  83. log.exception(f"Error during initialization: {e}")
  84. raise
  85. def check_vector_length(self) -> None:
  86. """
  87. Check if the VECTOR_LENGTH matches the existing vector column dimension in the database.
  88. Raises an exception if there is a mismatch.
  89. """
  90. metadata = MetaData()
  91. try:
  92. # Attempt to reflect the 'document_chunk' table
  93. document_chunk_table = Table(
  94. "document_chunk", metadata, autoload_with=self.session.bind
  95. )
  96. except NoSuchTableError:
  97. # Table does not exist; no action needed
  98. return
  99. # Proceed to check the vector column
  100. if "vector" in document_chunk_table.columns:
  101. vector_column = document_chunk_table.columns["vector"]
  102. vector_type = vector_column.type
  103. if isinstance(vector_type, Vector):
  104. db_vector_length = vector_type.dim
  105. if db_vector_length != VECTOR_LENGTH:
  106. raise Exception(
  107. f"VECTOR_LENGTH {VECTOR_LENGTH} does not match existing vector column dimension {db_vector_length}. "
  108. "Cannot change vector size after initialization without migrating the data."
  109. )
  110. else:
  111. raise Exception(
  112. "The 'vector' column exists but is not of type 'Vector'."
  113. )
  114. else:
  115. raise Exception(
  116. "The 'vector' column does not exist in the 'document_chunk' table."
  117. )
  118. def adjust_vector_length(self, vector: List[float]) -> List[float]:
  119. # Adjust vector to have length VECTOR_LENGTH
  120. current_length = len(vector)
  121. if current_length < VECTOR_LENGTH:
  122. # Pad the vector with zeros
  123. vector += [0.0] * (VECTOR_LENGTH - current_length)
  124. elif current_length > VECTOR_LENGTH:
  125. # Truncate the vector to VECTOR_LENGTH
  126. vector = vector[:VECTOR_LENGTH]
  127. return vector
  128. def insert(self, collection_name: str, items: List[VectorItem]) -> None:
  129. try:
  130. new_items = []
  131. for item in items:
  132. vector = self.adjust_vector_length(item["vector"])
  133. new_chunk = DocumentChunk(
  134. id=item["id"],
  135. vector=vector,
  136. collection_name=collection_name,
  137. text=item["text"],
  138. vmetadata=item["metadata"],
  139. )
  140. new_items.append(new_chunk)
  141. self.session.bulk_save_objects(new_items)
  142. self.session.commit()
  143. log.info(
  144. f"Inserted {len(new_items)} items into collection '{collection_name}'."
  145. )
  146. except Exception as e:
  147. self.session.rollback()
  148. log.exception(f"Error during insert: {e}")
  149. raise
  150. def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
  151. try:
  152. for item in items:
  153. vector = self.adjust_vector_length(item["vector"])
  154. existing = (
  155. self.session.query(DocumentChunk)
  156. .filter(DocumentChunk.id == item["id"])
  157. .first()
  158. )
  159. if existing:
  160. existing.vector = vector
  161. existing.text = item["text"]
  162. existing.vmetadata = item["metadata"]
  163. existing.collection_name = (
  164. collection_name # Update collection_name if necessary
  165. )
  166. else:
  167. new_chunk = DocumentChunk(
  168. id=item["id"],
  169. vector=vector,
  170. collection_name=collection_name,
  171. text=item["text"],
  172. vmetadata=item["metadata"],
  173. )
  174. self.session.add(new_chunk)
  175. self.session.commit()
  176. log.info(
  177. f"Upserted {len(items)} items into collection '{collection_name}'."
  178. )
  179. except Exception as e:
  180. self.session.rollback()
  181. log.exception(f"Error during upsert: {e}")
  182. raise
  183. def search(
  184. self,
  185. collection_name: str,
  186. vectors: List[List[float]],
  187. limit: Optional[int] = None,
  188. ) -> Optional[SearchResult]:
  189. try:
  190. if not vectors:
  191. return None
  192. # Adjust query vectors to VECTOR_LENGTH
  193. vectors = [self.adjust_vector_length(vector) for vector in vectors]
  194. num_queries = len(vectors)
  195. def vector_expr(vector):
  196. return cast(array(vector), Vector(VECTOR_LENGTH))
  197. # Create the values for query vectors
  198. qid_col = column("qid", Integer)
  199. q_vector_col = column("q_vector", Vector(VECTOR_LENGTH))
  200. query_vectors = (
  201. values(qid_col, q_vector_col)
  202. .data(
  203. [(idx, vector_expr(vector)) for idx, vector in enumerate(vectors)]
  204. )
  205. .alias("query_vectors")
  206. )
  207. # Build the lateral subquery for each query vector
  208. subq = (
  209. select(
  210. DocumentChunk.id,
  211. DocumentChunk.text,
  212. DocumentChunk.vmetadata,
  213. (
  214. DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector)
  215. ).label("distance"),
  216. )
  217. .where(DocumentChunk.collection_name == collection_name)
  218. .order_by(
  219. (DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector))
  220. )
  221. )
  222. if limit is not None:
  223. subq = subq.limit(limit)
  224. subq = subq.lateral("result")
  225. # Build the main query by joining query_vectors and the lateral subquery
  226. stmt = (
  227. select(
  228. query_vectors.c.qid,
  229. subq.c.id,
  230. subq.c.text,
  231. subq.c.vmetadata,
  232. subq.c.distance,
  233. )
  234. .select_from(query_vectors)
  235. .join(subq, true())
  236. .order_by(query_vectors.c.qid, subq.c.distance)
  237. )
  238. result_proxy = self.session.execute(stmt)
  239. results = result_proxy.all()
  240. ids = [[] for _ in range(num_queries)]
  241. distances = [[] for _ in range(num_queries)]
  242. documents = [[] for _ in range(num_queries)]
  243. metadatas = [[] for _ in range(num_queries)]
  244. if not results:
  245. return SearchResult(
  246. ids=ids,
  247. distances=distances,
  248. documents=documents,
  249. metadatas=metadatas,
  250. )
  251. for row in results:
  252. qid = int(row.qid)
  253. ids[qid].append(row.id)
  254. # normalize and re-orders pgvec distance from [2, 0] to [0, 1] score range
  255. # https://github.com/pgvector/pgvector?tab=readme-ov-file#querying
  256. distances[qid].append((2.0 - row.distance) / 2.0)
  257. documents[qid].append(row.text)
  258. metadatas[qid].append(row.vmetadata)
  259. return SearchResult(
  260. ids=ids, distances=distances, documents=documents, metadatas=metadatas
  261. )
  262. except Exception as e:
  263. log.exception(f"Error during search: {e}")
  264. return None
  265. def query(
  266. self, collection_name: str, filter: Dict[str, Any], limit: Optional[int] = None
  267. ) -> Optional[GetResult]:
  268. try:
  269. query = self.session.query(DocumentChunk).filter(
  270. DocumentChunk.collection_name == collection_name
  271. )
  272. for key, value in filter.items():
  273. query = query.filter(DocumentChunk.vmetadata[key].astext == str(value))
  274. if limit is not None:
  275. query = query.limit(limit)
  276. results = query.all()
  277. if not results:
  278. return None
  279. ids = [[result.id for result in results]]
  280. documents = [[result.text for result in results]]
  281. metadatas = [[result.vmetadata for result in results]]
  282. return GetResult(
  283. ids=ids,
  284. documents=documents,
  285. metadatas=metadatas,
  286. )
  287. except Exception as e:
  288. log.exception(f"Error during query: {e}")
  289. return None
  290. def get(
  291. self, collection_name: str, limit: Optional[int] = None
  292. ) -> Optional[GetResult]:
  293. try:
  294. query = self.session.query(DocumentChunk).filter(
  295. DocumentChunk.collection_name == collection_name
  296. )
  297. if limit is not None:
  298. query = query.limit(limit)
  299. results = query.all()
  300. if not results:
  301. return None
  302. ids = [[result.id for result in results]]
  303. documents = [[result.text for result in results]]
  304. metadatas = [[result.vmetadata for result in results]]
  305. return GetResult(ids=ids, documents=documents, metadatas=metadatas)
  306. except Exception as e:
  307. log.exception(f"Error during get: {e}")
  308. return None
  309. def delete(
  310. self,
  311. collection_name: str,
  312. ids: Optional[List[str]] = None,
  313. filter: Optional[Dict[str, Any]] = None,
  314. ) -> None:
  315. try:
  316. query = self.session.query(DocumentChunk).filter(
  317. DocumentChunk.collection_name == collection_name
  318. )
  319. if ids:
  320. query = query.filter(DocumentChunk.id.in_(ids))
  321. if filter:
  322. for key, value in filter.items():
  323. query = query.filter(
  324. DocumentChunk.vmetadata[key].astext == str(value)
  325. )
  326. deleted = query.delete(synchronize_session=False)
  327. self.session.commit()
  328. log.info(f"Deleted {deleted} items from collection '{collection_name}'.")
  329. except Exception as e:
  330. self.session.rollback()
  331. log.exception(f"Error during delete: {e}")
  332. raise
  333. def reset(self) -> None:
  334. try:
  335. deleted = self.session.query(DocumentChunk).delete()
  336. self.session.commit()
  337. log.info(
  338. f"Reset complete. Deleted {deleted} items from 'document_chunk' table."
  339. )
  340. except Exception as e:
  341. self.session.rollback()
  342. log.exception(f"Error during reset: {e}")
  343. raise
  344. def close(self) -> None:
  345. pass
  346. def has_collection(self, collection_name: str) -> bool:
  347. try:
  348. exists = (
  349. self.session.query(DocumentChunk)
  350. .filter(DocumentChunk.collection_name == collection_name)
  351. .first()
  352. is not None
  353. )
  354. return exists
  355. except Exception as e:
  356. log.exception(f"Error checking collection existence: {e}")
  357. return False
  358. def delete_collection(self, collection_name: str) -> None:
  359. self.delete(collection_name)
  360. log.info(f"Collection '{collection_name}' deleted.")