123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- from pymilvus import MilvusClient as Client
- from pymilvus import FieldSchema, DataType
- import json
- import logging
- from typing import Optional
- from open_webui.retrieval.vector.main import (
- VectorDBBase,
- VectorItem,
- SearchResult,
- GetResult,
- )
- from open_webui.config import (
- MILVUS_URI,
- MILVUS_DB,
- MILVUS_TOKEN,
- MILVUS_INDEX_TYPE,
- MILVUS_METRIC_TYPE,
- MILVUS_HNSW_M,
- MILVUS_HNSW_EFCONSTRUCTION,
- MILVUS_IVF_FLAT_NLIST,
- )
- from open_webui.env import SRC_LOG_LEVELS
- log = logging.getLogger(__name__)
- log.setLevel(SRC_LOG_LEVELS["RAG"])
- class MilvusClient(VectorDBBase):
- def __init__(self):
- self.collection_prefix = "open_webui"
- if MILVUS_TOKEN is None:
- self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB)
- else:
- self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB, token=MILVUS_TOKEN)
- def _result_to_get_result(self, result) -> GetResult:
- ids = []
- documents = []
- metadatas = []
- for match in result:
- _ids = []
- _documents = []
- _metadatas = []
- for item in match:
- _ids.append(item.get("id"))
- _documents.append(item.get("data", {}).get("text"))
- _metadatas.append(item.get("metadata"))
- ids.append(_ids)
- documents.append(_documents)
- metadatas.append(_metadatas)
- return GetResult(
- **{
- "ids": ids,
- "documents": documents,
- "metadatas": metadatas,
- }
- )
- def _result_to_search_result(self, result) -> SearchResult:
- ids = []
- distances = []
- documents = []
- metadatas = []
- for match in result:
- _ids = []
- _distances = []
- _documents = []
- _metadatas = []
- for item in match:
- _ids.append(item.get("id"))
- # normalize milvus score from [-1, 1] to [0, 1] range
- # https://milvus.io/docs/de/metric.md
- _dist = (item.get("distance") + 1.0) / 2.0
- _distances.append(_dist)
- _documents.append(item.get("entity", {}).get("data", {}).get("text"))
- _metadatas.append(item.get("entity", {}).get("metadata"))
- ids.append(_ids)
- distances.append(_distances)
- documents.append(_documents)
- metadatas.append(_metadatas)
- return SearchResult(
- **{
- "ids": ids,
- "distances": distances,
- "documents": documents,
- "metadatas": metadatas,
- }
- )
- def _create_collection(self, collection_name: str, dimension: int):
- schema = self.client.create_schema(
- auto_id=False,
- enable_dynamic_field=True,
- )
- schema.add_field(
- field_name="id",
- datatype=DataType.VARCHAR,
- is_primary=True,
- max_length=65535,
- )
- schema.add_field(
- field_name="vector",
- datatype=DataType.FLOAT_VECTOR,
- dim=dimension,
- description="vector",
- )
- schema.add_field(field_name="data", datatype=DataType.JSON, description="data")
- schema.add_field(
- field_name="metadata", datatype=DataType.JSON, description="metadata"
- )
- index_params = self.client.prepare_index_params()
- # Use configurations from config.py
- index_type = MILVUS_INDEX_TYPE.upper()
- metric_type = MILVUS_METRIC_TYPE.upper()
- log.info(f"Using Milvus index type: {index_type}, metric type: {metric_type}")
- index_creation_params = {}
- if index_type == "HNSW":
- index_creation_params = {
- "M": MILVUS_HNSW_M,
- "efConstruction": MILVUS_HNSW_EFCONSTRUCTION,
- }
- log.info(f"HNSW params: {index_creation_params}")
- elif index_type == "IVF_FLAT":
- index_creation_params = {"nlist": MILVUS_IVF_FLAT_NLIST}
- log.info(f"IVF_FLAT params: {index_creation_params}")
- elif index_type in ["FLAT", "AUTOINDEX"]:
- log.info(f"Using {index_type} index with no specific build-time params.")
- else:
- log.warning(
- f"Unsupported MILVUS_INDEX_TYPE: '{index_type}'. "
- f"Supported types: HNSW, IVF_FLAT, FLAT, AUTOINDEX. "
- f"Milvus will use its default for the collection if this type is not directly supported for index creation."
- )
- # For unsupported types, pass the type directly to Milvus; it might handle it or use a default.
- # If Milvus errors out, the user needs to correct the MILVUS_INDEX_TYPE env var.
- index_params.add_index(
- field_name="vector",
- index_type=index_type,
- metric_type=metric_type,
- params=index_creation_params,
- )
- self.client.create_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- schema=schema,
- index_params=index_params,
- )
- log.info(
- f"Successfully created collection '{self.collection_prefix}_{collection_name}' with index type '{index_type}' and metric '{metric_type}'."
- )
- def has_collection(self, collection_name: str) -> bool:
- # Check if the collection exists based on the collection name.
- collection_name = collection_name.replace("-", "_")
- return self.client.has_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- )
- def delete_collection(self, collection_name: str):
- # Delete the collection based on the collection name.
- collection_name = collection_name.replace("-", "_")
- return self.client.drop_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- )
- def search(
- self, collection_name: str, vectors: list[list[float | int]], limit: int
- ) -> Optional[SearchResult]:
- # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
- collection_name = collection_name.replace("-", "_")
- # For some index types like IVF_FLAT, search params like nprobe can be set.
- # Example: search_params = {"nprobe": 10} if using IVF_FLAT
- # For simplicity, not adding configurable search_params here, but could be extended.
- result = self.client.search(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- data=vectors,
- limit=limit,
- output_fields=["data", "metadata"],
- # search_params=search_params # Potentially add later if needed
- )
- return self._result_to_search_result(result)
- def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
- # Construct the filter string for querying
- collection_name = collection_name.replace("-", "_")
- if not self.has_collection(collection_name):
- log.warning(
- f"Query attempted on non-existent collection: {self.collection_prefix}_{collection_name}"
- )
- return None
- filter_string = " && ".join(
- [
- f'metadata["{key}"] == {json.dumps(value)}'
- for key, value in filter.items()
- ]
- )
- max_limit = 16383 # The maximum number of records per request
- all_results = []
- if limit is None:
- # Milvus default limit for query if not specified is 16384, but docs mention iteration.
- # Let's set a practical high number if "all" is intended, or handle true pagination.
- # For now, if limit is None, we'll fetch in batches up to a very large number.
- # This part could be refined based on expected use cases for "get all".
- # For this function signature, None implies "as many as possible" up to Milvus limits.
- limit = (
- 16384 * 10
- ) # A large number to signify fetching many, will be capped by actual data or max_limit per call.
- log.info(
- f"Limit not specified for query, fetching up to {limit} results in batches."
- )
- # Initialize offset and remaining to handle pagination
- offset = 0
- remaining = limit
- try:
- log.info(
- f"Querying collection {self.collection_prefix}_{collection_name} with filter: '{filter_string}', limit: {limit}"
- )
- # Loop until there are no more items to fetch or the desired limit is reached
- while remaining > 0:
- current_fetch = min(
- max_limit, remaining if isinstance(remaining, int) else max_limit
- )
- log.debug(
- f"Querying with offset: {offset}, current_fetch: {current_fetch}"
- )
- results = self.client.query(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- filter=filter_string,
- output_fields=[
- "id",
- "data",
- "metadata",
- ], # Explicitly list needed fields. Vector not usually needed in query.
- limit=current_fetch,
- offset=offset,
- )
- if not results:
- log.debug("No more results from query.")
- break
- all_results.extend(results)
- results_count = len(results)
- log.debug(f"Fetched {results_count} results in this batch.")
- if isinstance(remaining, int):
- remaining -= results_count
- offset += results_count
- # Break the loop if the results returned are less than the requested fetch count (means end of data)
- if results_count < current_fetch:
- log.debug(
- "Fetched less than requested, assuming end of results for this query."
- )
- break
- log.info(f"Total results from query: {len(all_results)}")
- return self._result_to_get_result([all_results])
- except Exception as e:
- log.exception(
- f"Error querying collection {self.collection_prefix}_{collection_name} with filter '{filter_string}' and limit {limit}: {e}"
- )
- return None
- def get(self, collection_name: str) -> Optional[GetResult]:
- # Get all the items in the collection. This can be very resource-intensive for large collections.
- collection_name = collection_name.replace("-", "_")
- log.warning(
- f"Fetching ALL items from collection '{self.collection_prefix}_{collection_name}'. This might be slow for large collections."
- )
- # Using query with a trivial filter to get all items.
- # This will use the paginated query logic.
- return self.query(collection_name=collection_name, filter={}, limit=None)
- def insert(self, collection_name: str, items: list[VectorItem]):
- # Insert the items into the collection, if the collection does not exist, it will be created.
- collection_name = collection_name.replace("-", "_")
- if not self.client.has_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- ):
- log.info(
- f"Collection {self.collection_prefix}_{collection_name} does not exist. Creating now."
- )
- if not items:
- log.error(
- f"Cannot create collection {self.collection_prefix}_{collection_name} without items to determine dimension."
- )
- raise ValueError(
- "Cannot create Milvus collection without items to determine vector dimension."
- )
- self._create_collection(
- collection_name=collection_name, dimension=len(items[0]["vector"])
- )
- log.info(
- f"Inserting {len(items)} items into collection {self.collection_prefix}_{collection_name}."
- )
- return self.client.insert(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- data=[
- {
- "id": item["id"],
- "vector": item["vector"],
- "data": {"text": item["text"]},
- "metadata": item["metadata"],
- }
- for item in items
- ],
- )
- def upsert(self, collection_name: str, items: list[VectorItem]):
- # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
- collection_name = collection_name.replace("-", "_")
- if not self.client.has_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- ):
- log.info(
- f"Collection {self.collection_prefix}_{collection_name} does not exist for upsert. Creating now."
- )
- if not items:
- log.error(
- f"Cannot create collection {self.collection_prefix}_{collection_name} for upsert without items to determine dimension."
- )
- raise ValueError(
- "Cannot create Milvus collection for upsert without items to determine vector dimension."
- )
- self._create_collection(
- collection_name=collection_name, dimension=len(items[0]["vector"])
- )
- log.info(
- f"Upserting {len(items)} items into collection {self.collection_prefix}_{collection_name}."
- )
- return self.client.upsert(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- data=[
- {
- "id": item["id"],
- "vector": item["vector"],
- "data": {"text": item["text"]},
- "metadata": item["metadata"],
- }
- for item in items
- ],
- )
- def delete(
- self,
- collection_name: str,
- ids: Optional[list[str]] = None,
- filter: Optional[dict] = None,
- ):
- # Delete the items from the collection based on the ids or filter.
- collection_name = collection_name.replace("-", "_")
- if not self.has_collection(collection_name):
- log.warning(
- f"Delete attempted on non-existent collection: {self.collection_prefix}_{collection_name}"
- )
- return None
- if ids:
- log.info(
- f"Deleting items by IDs from {self.collection_prefix}_{collection_name}. IDs: {ids}"
- )
- return self.client.delete(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- ids=ids,
- )
- elif filter:
- filter_string = " && ".join(
- [
- f'metadata["{key}"] == {json.dumps(value)}'
- for key, value in filter.items()
- ]
- )
- log.info(
- f"Deleting items by filter from {self.collection_prefix}_{collection_name}. Filter: {filter_string}"
- )
- return self.client.delete(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- filter=filter_string,
- )
- else:
- log.warning(
- f"Delete operation on {self.collection_prefix}_{collection_name} called without IDs or filter. No action taken."
- )
- return None
- def reset(self):
- # Resets the database. This will delete all collections and item entries that match the prefix.
- log.warning(
- f"Resetting Milvus: Deleting all collections with prefix '{self.collection_prefix}'."
- )
- collection_names = self.client.list_collections()
- deleted_collections = []
- for collection_name_full in collection_names:
- if collection_name_full.startswith(self.collection_prefix):
- try:
- self.client.drop_collection(collection_name=collection_name_full)
- deleted_collections.append(collection_name_full)
- log.info(f"Deleted collection: {collection_name_full}")
- except Exception as e:
- log.error(f"Error deleting collection {collection_name_full}: {e}")
- log.info(f"Milvus reset complete. Deleted collections: {deleted_collections}")
|