utils.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. import hashlib
  6. from concurrent.futures import ThreadPoolExecutor
  7. from huggingface_hub import snapshot_download
  8. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain_core.documents import Document
  11. from open_webui.config import VECTOR_DB
  12. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  13. from open_webui.models.users import UserModel
  14. from open_webui.models.files import Files
  15. from open_webui.retrieval.vector.main import GetResult
  16. from open_webui.env import (
  17. SRC_LOG_LEVELS,
  18. OFFLINE_MODE,
  19. ENABLE_FORWARD_USER_INFO_HEADERS,
  20. )
  21. from open_webui.config import (
  22. RAG_EMBEDDING_QUERY_PREFIX,
  23. RAG_EMBEDDING_CONTENT_PREFIX,
  24. RAG_EMBEDDING_PREFIX_FIELD_NAME,
  25. )
  26. log = logging.getLogger(__name__)
  27. log.setLevel(SRC_LOG_LEVELS["RAG"])
  28. from typing import Any
  29. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  30. from langchain_core.retrievers import BaseRetriever
  31. class VectorSearchRetriever(BaseRetriever):
  32. collection_name: Any
  33. embedding_function: Any
  34. top_k: int
  35. def _get_relevant_documents(
  36. self,
  37. query: str,
  38. *,
  39. run_manager: CallbackManagerForRetrieverRun,
  40. ) -> list[Document]:
  41. result = VECTOR_DB_CLIENT.search(
  42. collection_name=self.collection_name,
  43. vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],
  44. limit=self.top_k,
  45. )
  46. ids = result.ids[0]
  47. metadatas = result.metadatas[0]
  48. documents = result.documents[0]
  49. results = []
  50. for idx in range(len(ids)):
  51. results.append(
  52. Document(
  53. metadata=metadatas[idx],
  54. page_content=documents[idx],
  55. )
  56. )
  57. return results
  58. def query_doc(
  59. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  60. ):
  61. try:
  62. result = VECTOR_DB_CLIENT.search(
  63. collection_name=collection_name,
  64. vectors=[query_embedding],
  65. limit=k,
  66. )
  67. if result:
  68. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  69. return result
  70. except Exception as e:
  71. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  72. raise e
  73. def get_doc(collection_name: str, user: UserModel = None):
  74. try:
  75. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  76. if result:
  77. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  78. return result
  79. except Exception as e:
  80. log.exception(f"Error getting doc {collection_name}: {e}")
  81. raise e
  82. def query_doc_with_hybrid_search(
  83. collection_name: str,
  84. collection_result: GetResult,
  85. query: str,
  86. embedding_function,
  87. k: int,
  88. reranking_function,
  89. k_reranker: int,
  90. r: float,
  91. ) -> dict:
  92. try:
  93. bm25_retriever = BM25Retriever.from_texts(
  94. texts=collection_result.documents[0],
  95. metadatas=collection_result.metadatas[0],
  96. )
  97. bm25_retriever.k = k
  98. vector_search_retriever = VectorSearchRetriever(
  99. collection_name=collection_name,
  100. embedding_function=embedding_function,
  101. top_k=k,
  102. )
  103. ensemble_retriever = EnsembleRetriever(
  104. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  105. )
  106. compressor = RerankCompressor(
  107. embedding_function=embedding_function,
  108. top_n=k_reranker,
  109. reranking_function=reranking_function,
  110. r_score=r,
  111. )
  112. compression_retriever = ContextualCompressionRetriever(
  113. base_compressor=compressor, base_retriever=ensemble_retriever
  114. )
  115. result = compression_retriever.invoke(query)
  116. distances = [d.metadata.get("score") for d in result]
  117. documents = [d.page_content for d in result]
  118. metadatas = [d.metadata for d in result]
  119. # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
  120. if k < k_reranker:
  121. sorted_items = sorted(
  122. zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
  123. )
  124. sorted_items = sorted_items[:k]
  125. distances, documents, metadatas = map(list, zip(*sorted_items))
  126. result = {
  127. "distances": [distances],
  128. "documents": [documents],
  129. "metadatas": [metadatas],
  130. }
  131. log.info(
  132. "query_doc_with_hybrid_search:result "
  133. + f'{result["metadatas"]} {result["distances"]}'
  134. )
  135. return result
  136. except Exception as e:
  137. raise e
  138. def merge_get_results(get_results: list[dict]) -> dict:
  139. # Initialize lists to store combined data
  140. combined_documents = []
  141. combined_metadatas = []
  142. combined_ids = []
  143. for data in get_results:
  144. combined_documents.extend(data["documents"][0])
  145. combined_metadatas.extend(data["metadatas"][0])
  146. combined_ids.extend(data["ids"][0])
  147. # Create the output dictionary
  148. result = {
  149. "documents": [combined_documents],
  150. "metadatas": [combined_metadatas],
  151. "ids": [combined_ids],
  152. }
  153. return result
  154. def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
  155. # Initialize lists to store combined data
  156. combined = dict() # To store documents with unique document hashes
  157. for data in query_results:
  158. distances = data["distances"][0]
  159. documents = data["documents"][0]
  160. metadatas = data["metadatas"][0]
  161. for distance, document, metadata in zip(distances, documents, metadatas):
  162. if isinstance(document, str):
  163. doc_hash = hashlib.md5(
  164. document.encode()
  165. ).hexdigest() # Compute a hash for uniqueness
  166. if doc_hash not in combined.keys():
  167. combined[doc_hash] = (distance, document, metadata)
  168. continue # if doc is new, no further comparison is needed
  169. # if doc is alredy in, but new distance is better, update
  170. if distance > combined[doc_hash][0]:
  171. combined[doc_hash] = (distance, document, metadata)
  172. combined = list(combined.values())
  173. # Sort the list based on distances
  174. combined.sort(key=lambda x: x[0], reverse=True)
  175. # Slice to keep only the top k elements
  176. sorted_distances, sorted_documents, sorted_metadatas = (
  177. zip(*combined[:k]) if combined else ([], [], [])
  178. )
  179. # Create and return the output dictionary
  180. return {
  181. "distances": [list(sorted_distances)],
  182. "documents": [list(sorted_documents)],
  183. "metadatas": [list(sorted_metadatas)],
  184. }
  185. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  186. results = []
  187. for collection_name in collection_names:
  188. if collection_name:
  189. try:
  190. result = get_doc(collection_name=collection_name)
  191. if result is not None:
  192. results.append(result.model_dump())
  193. except Exception as e:
  194. log.exception(f"Error when querying the collection: {e}")
  195. else:
  196. pass
  197. return merge_get_results(results)
  198. def query_collection(
  199. collection_names: list[str],
  200. queries: list[str],
  201. embedding_function,
  202. k: int,
  203. ) -> dict:
  204. results = []
  205. for query in queries:
  206. query_embedding = embedding_function(query, prefix=RAG_EMBEDDING_QUERY_PREFIX)
  207. for collection_name in collection_names:
  208. if collection_name:
  209. try:
  210. result = query_doc(
  211. collection_name=collection_name,
  212. k=k,
  213. query_embedding=query_embedding,
  214. )
  215. if result is not None:
  216. results.append(result.model_dump())
  217. except Exception as e:
  218. log.exception(f"Error when querying the collection: {e}")
  219. else:
  220. pass
  221. return merge_and_sort_query_results(results, k=k)
  222. def query_collection_with_hybrid_search(
  223. collection_names: list[str],
  224. queries: list[str],
  225. embedding_function,
  226. k: int,
  227. reranking_function,
  228. k_reranker: int,
  229. r: float,
  230. ) -> dict:
  231. results = []
  232. error = False
  233. # Fetch collection data once per collection sequentially
  234. # Avoid fetching the same data multiple times later
  235. collection_results = {}
  236. for collection_name in collection_names:
  237. try:
  238. collection_results[collection_name] = VECTOR_DB_CLIENT.get(
  239. collection_name=collection_name
  240. )
  241. except Exception as e:
  242. log.exception(f"Failed to fetch collection {collection_name}: {e}")
  243. collection_results[collection_name] = None
  244. log.info(
  245. f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
  246. )
  247. def process_query(collection_name, query):
  248. try:
  249. result = query_doc_with_hybrid_search(
  250. collection_name=collection_name,
  251. collection_result=collection_results[collection_name],
  252. query=query,
  253. embedding_function=embedding_function,
  254. k=k,
  255. reranking_function=reranking_function,
  256. k_reranker=k_reranker,
  257. r=r,
  258. )
  259. return result, None
  260. except Exception as e:
  261. log.exception(f"Error when querying the collection with hybrid_search: {e}")
  262. return None, e
  263. tasks = [
  264. (collection_name, query)
  265. for collection_name in collection_names
  266. for query in queries
  267. ]
  268. with ThreadPoolExecutor() as executor:
  269. future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]
  270. task_results = [future.result() for future in future_results]
  271. for result, err in task_results:
  272. if err is not None:
  273. error = True
  274. elif result is not None:
  275. results.append(result)
  276. if error and not results:
  277. raise Exception(
  278. "Hybrid search failed for all collections. Using Non-hybrid search as fallback."
  279. )
  280. return merge_and_sort_query_results(results, k=k)
  281. def get_embedding_function(
  282. embedding_engine,
  283. embedding_model,
  284. embedding_function,
  285. url,
  286. key,
  287. embedding_batch_size,
  288. ):
  289. if embedding_engine == "":
  290. return lambda query, prefix=None, user=None: embedding_function.encode(
  291. query, prompt=prefix if prefix else None
  292. ).tolist()
  293. elif embedding_engine in ["ollama", "openai"]:
  294. func = lambda query, prefix=None, user=None: generate_embeddings(
  295. engine=embedding_engine,
  296. model=embedding_model,
  297. text=query,
  298. prefix=prefix,
  299. url=url,
  300. key=key,
  301. user=user,
  302. )
  303. def generate_multiple(query, prefix, user, func):
  304. if isinstance(query, list):
  305. embeddings = []
  306. for i in range(0, len(query), embedding_batch_size):
  307. embeddings.extend(
  308. func(
  309. query[i : i + embedding_batch_size],
  310. prefix=prefix,
  311. user=user,
  312. )
  313. )
  314. return embeddings
  315. else:
  316. return func(query, prefix, user)
  317. return lambda query, prefix=None, user=None: generate_multiple(
  318. query, prefix, user, func
  319. )
  320. else:
  321. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  322. def get_sources_from_files(
  323. request,
  324. files,
  325. queries,
  326. embedding_function,
  327. k,
  328. reranking_function,
  329. k_reranker,
  330. r,
  331. hybrid_search,
  332. full_context=False,
  333. ):
  334. log.debug(
  335. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  336. )
  337. extracted_collections = []
  338. relevant_contexts = []
  339. for file in files:
  340. context = None
  341. if file.get("docs"):
  342. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  343. context = {
  344. "documents": [[doc.get("content") for doc in file.get("docs")]],
  345. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  346. }
  347. elif file.get("context") == "full":
  348. # Manual Full Mode Toggle
  349. context = {
  350. "documents": [[file.get("file").get("data", {}).get("content")]],
  351. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  352. }
  353. elif (
  354. file.get("type") != "web_search"
  355. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  356. ):
  357. # BYPASS_EMBEDDING_AND_RETRIEVAL
  358. if file.get("type") == "collection":
  359. file_ids = file.get("data", {}).get("file_ids", [])
  360. documents = []
  361. metadatas = []
  362. for file_id in file_ids:
  363. file_object = Files.get_file_by_id(file_id)
  364. if file_object:
  365. documents.append(file_object.data.get("content", ""))
  366. metadatas.append(
  367. {
  368. "file_id": file_id,
  369. "name": file_object.filename,
  370. "source": file_object.filename,
  371. }
  372. )
  373. context = {
  374. "documents": [documents],
  375. "metadatas": [metadatas],
  376. }
  377. elif file.get("id"):
  378. file_object = Files.get_file_by_id(file.get("id"))
  379. if file_object:
  380. context = {
  381. "documents": [[file_object.data.get("content", "")]],
  382. "metadatas": [
  383. [
  384. {
  385. "file_id": file.get("id"),
  386. "name": file_object.filename,
  387. "source": file_object.filename,
  388. }
  389. ]
  390. ],
  391. }
  392. elif file.get("file").get("data"):
  393. context = {
  394. "documents": [[file.get("file").get("data", {}).get("content")]],
  395. "metadatas": [
  396. [file.get("file").get("data", {}).get("metadata", {})]
  397. ],
  398. }
  399. else:
  400. collection_names = []
  401. if file.get("type") == "collection":
  402. if file.get("legacy"):
  403. collection_names = file.get("collection_names", [])
  404. else:
  405. collection_names.append(file["id"])
  406. elif file.get("collection_name"):
  407. collection_names.append(file["collection_name"])
  408. elif file.get("id"):
  409. if file.get("legacy"):
  410. collection_names.append(f"{file['id']}")
  411. else:
  412. collection_names.append(f"file-{file['id']}")
  413. collection_names = set(collection_names).difference(extracted_collections)
  414. if not collection_names:
  415. log.debug(f"skipping {file} as it has already been extracted")
  416. continue
  417. if full_context:
  418. try:
  419. context = get_all_items_from_collections(collection_names)
  420. except Exception as e:
  421. log.exception(e)
  422. else:
  423. try:
  424. context = None
  425. if file.get("type") == "text":
  426. context = file["content"]
  427. else:
  428. if hybrid_search:
  429. try:
  430. context = query_collection_with_hybrid_search(
  431. collection_names=collection_names,
  432. queries=queries,
  433. embedding_function=embedding_function,
  434. k=k,
  435. reranking_function=reranking_function,
  436. k_reranker=k_reranker,
  437. r=r,
  438. )
  439. except Exception as e:
  440. log.debug(
  441. "Error when using hybrid search, using"
  442. " non hybrid search as fallback."
  443. )
  444. if (not hybrid_search) or (context is None):
  445. context = query_collection(
  446. collection_names=collection_names,
  447. queries=queries,
  448. embedding_function=embedding_function,
  449. k=k,
  450. )
  451. except Exception as e:
  452. log.exception(e)
  453. extracted_collections.extend(collection_names)
  454. if context:
  455. if "data" in file:
  456. del file["data"]
  457. relevant_contexts.append({**context, "file": file})
  458. sources = []
  459. for context in relevant_contexts:
  460. try:
  461. if "documents" in context:
  462. if "metadatas" in context:
  463. source = {
  464. "source": context["file"],
  465. "document": context["documents"][0],
  466. "metadata": context["metadatas"][0],
  467. }
  468. if "distances" in context and context["distances"]:
  469. source["distances"] = context["distances"][0]
  470. sources.append(source)
  471. except Exception as e:
  472. log.exception(e)
  473. return sources
  474. def get_model_path(model: str, update_model: bool = False):
  475. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  476. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  477. local_files_only = not update_model
  478. if OFFLINE_MODE:
  479. local_files_only = True
  480. snapshot_kwargs = {
  481. "cache_dir": cache_dir,
  482. "local_files_only": local_files_only,
  483. }
  484. log.debug(f"model: {model}")
  485. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  486. # Inspiration from upstream sentence_transformers
  487. if (
  488. os.path.exists(model)
  489. or ("\\" in model or model.count("/") > 1)
  490. and local_files_only
  491. ):
  492. # If fully qualified path exists, return input, else set repo_id
  493. return model
  494. elif "/" not in model:
  495. # Set valid repo_id for model short-name
  496. model = "sentence-transformers" + "/" + model
  497. snapshot_kwargs["repo_id"] = model
  498. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  499. try:
  500. model_repo_path = snapshot_download(**snapshot_kwargs)
  501. log.debug(f"model_repo_path: {model_repo_path}")
  502. return model_repo_path
  503. except Exception as e:
  504. log.exception(f"Cannot determine model snapshot path: {e}")
  505. return model
  506. def generate_openai_batch_embeddings(
  507. model: str,
  508. texts: list[str],
  509. url: str = "https://api.openai.com/v1",
  510. key: str = "",
  511. prefix: str = None,
  512. user: UserModel = None,
  513. ) -> Optional[list[list[float]]]:
  514. try:
  515. json_data = {"input": texts, "model": model}
  516. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  517. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  518. r = requests.post(
  519. f"{url}/embeddings",
  520. headers={
  521. "Content-Type": "application/json",
  522. "Authorization": f"Bearer {key}",
  523. **(
  524. {
  525. "X-OpenWebUI-User-Name": user.name,
  526. "X-OpenWebUI-User-Id": user.id,
  527. "X-OpenWebUI-User-Email": user.email,
  528. "X-OpenWebUI-User-Role": user.role,
  529. }
  530. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  531. else {}
  532. ),
  533. },
  534. json=json_data,
  535. )
  536. r.raise_for_status()
  537. data = r.json()
  538. if "data" in data:
  539. return [elem["embedding"] for elem in data["data"]]
  540. else:
  541. raise "Something went wrong :/"
  542. except Exception as e:
  543. log.exception(f"Error generating openai batch embeddings: {e}")
  544. return None
  545. def generate_ollama_batch_embeddings(
  546. model: str,
  547. texts: list[str],
  548. url: str,
  549. key: str = "",
  550. prefix: str = None,
  551. user: UserModel = None,
  552. ) -> Optional[list[list[float]]]:
  553. try:
  554. json_data = {"input": texts, "model": model}
  555. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  556. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  557. r = requests.post(
  558. f"{url}/api/embed",
  559. headers={
  560. "Content-Type": "application/json",
  561. "Authorization": f"Bearer {key}",
  562. **(
  563. {
  564. "X-OpenWebUI-User-Name": user.name,
  565. "X-OpenWebUI-User-Id": user.id,
  566. "X-OpenWebUI-User-Email": user.email,
  567. "X-OpenWebUI-User-Role": user.role,
  568. }
  569. if ENABLE_FORWARD_USER_INFO_HEADERS
  570. else {}
  571. ),
  572. },
  573. json=json_data,
  574. )
  575. r.raise_for_status()
  576. data = r.json()
  577. if "embeddings" in data:
  578. return data["embeddings"]
  579. else:
  580. raise "Something went wrong :/"
  581. except Exception as e:
  582. log.exception(f"Error generating ollama batch embeddings: {e}")
  583. return None
  584. def generate_embeddings(
  585. engine: str,
  586. model: str,
  587. text: Union[str, list[str]],
  588. prefix: Union[str, None] = None,
  589. **kwargs,
  590. ):
  591. url = kwargs.get("url", "")
  592. key = kwargs.get("key", "")
  593. user = kwargs.get("user")
  594. if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
  595. if isinstance(text, list):
  596. text = [f"{prefix}{text_element}" for text_element in text]
  597. else:
  598. text = f"{prefix}{text}"
  599. if engine == "ollama":
  600. if isinstance(text, list):
  601. embeddings = generate_ollama_batch_embeddings(
  602. **{
  603. "model": model,
  604. "texts": text,
  605. "url": url,
  606. "key": key,
  607. "prefix": prefix,
  608. "user": user,
  609. }
  610. )
  611. else:
  612. embeddings = generate_ollama_batch_embeddings(
  613. **{
  614. "model": model,
  615. "texts": [text],
  616. "url": url,
  617. "key": key,
  618. "prefix": prefix,
  619. "user": user,
  620. }
  621. )
  622. return embeddings[0] if isinstance(text, str) else embeddings
  623. elif engine == "openai":
  624. if isinstance(text, list):
  625. embeddings = generate_openai_batch_embeddings(
  626. model, text, url, key, prefix, user
  627. )
  628. else:
  629. embeddings = generate_openai_batch_embeddings(
  630. model, [text], url, key, prefix, user
  631. )
  632. return embeddings[0] if isinstance(text, str) else embeddings
  633. import operator
  634. from typing import Optional, Sequence
  635. from langchain_core.callbacks import Callbacks
  636. from langchain_core.documents import BaseDocumentCompressor, Document
  637. class RerankCompressor(BaseDocumentCompressor):
  638. embedding_function: Any
  639. top_n: int
  640. reranking_function: Any
  641. r_score: float
  642. class Config:
  643. extra = "forbid"
  644. arbitrary_types_allowed = True
  645. def compress_documents(
  646. self,
  647. documents: Sequence[Document],
  648. query: str,
  649. callbacks: Optional[Callbacks] = None,
  650. ) -> Sequence[Document]:
  651. reranking = self.reranking_function is not None
  652. if reranking:
  653. scores = self.reranking_function.predict(
  654. [(query, doc.page_content) for doc in documents]
  655. )
  656. else:
  657. from sentence_transformers import util
  658. query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  659. document_embedding = self.embedding_function(
  660. [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
  661. )
  662. scores = util.cos_sim(query_embedding, document_embedding)[0]
  663. docs_with_scores = list(zip(documents, scores.tolist()))
  664. if self.r_score:
  665. docs_with_scores = [
  666. (d, s) for d, s in docs_with_scores if s >= self.r_score
  667. ]
  668. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  669. final_results = []
  670. for doc, doc_score in result[: self.top_n]:
  671. metadata = doc.metadata
  672. metadata["score"] = doc_score
  673. doc = Document(
  674. page_content=doc.page_content,
  675. metadata=metadata,
  676. )
  677. final_results.append(doc)
  678. return final_results