utils.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import asyncio
  6. import requests
  7. import hashlib
  8. from huggingface_hub import snapshot_download
  9. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  10. from langchain_community.retrievers import BM25Retriever
  11. from langchain_core.documents import Document
  12. from open_webui.config import VECTOR_DB
  13. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  14. from open_webui.utils.misc import get_last_user_message, calculate_sha256_string
  15. from open_webui.models.users import UserModel
  16. from open_webui.models.files import Files
  17. from open_webui.env import (
  18. SRC_LOG_LEVELS,
  19. OFFLINE_MODE,
  20. ENABLE_FORWARD_USER_INFO_HEADERS,
  21. )
  22. log = logging.getLogger(__name__)
  23. log.setLevel(SRC_LOG_LEVELS["RAG"])
  24. from typing import Any
  25. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  26. from langchain_core.retrievers import BaseRetriever
  27. class VectorSearchRetriever(BaseRetriever):
  28. collection_name: Any
  29. embedding_function: Any
  30. top_k: int
  31. def _get_relevant_documents(
  32. self,
  33. query: str,
  34. *,
  35. run_manager: CallbackManagerForRetrieverRun,
  36. ) -> list[Document]:
  37. result = VECTOR_DB_CLIENT.search(
  38. collection_name=self.collection_name,
  39. vectors=[self.embedding_function(query)],
  40. limit=self.top_k,
  41. )
  42. ids = result.ids[0]
  43. metadatas = result.metadatas[0]
  44. documents = result.documents[0]
  45. results = []
  46. for idx in range(len(ids)):
  47. results.append(
  48. Document(
  49. metadata=metadatas[idx],
  50. page_content=documents[idx],
  51. )
  52. )
  53. return results
  54. def query_doc(
  55. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  56. ):
  57. try:
  58. result = VECTOR_DB_CLIENT.search(
  59. collection_name=collection_name,
  60. vectors=[query_embedding],
  61. limit=k,
  62. )
  63. if result:
  64. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  65. return result
  66. except Exception as e:
  67. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  68. raise e
  69. def get_doc(collection_name: str, user: UserModel = None):
  70. try:
  71. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  72. if result:
  73. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  74. return result
  75. except Exception as e:
  76. log.exception(f"Error getting doc {collection_name}: {e}")
  77. raise e
  78. def query_doc_with_hybrid_search(
  79. collection_name: str,
  80. query: str,
  81. embedding_function,
  82. k: int,
  83. reranking_function,
  84. k_reranker: int,
  85. r: float,
  86. ) -> dict:
  87. try:
  88. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  89. bm25_retriever = BM25Retriever.from_texts(
  90. texts=result.documents[0],
  91. metadatas=result.metadatas[0],
  92. )
  93. bm25_retriever.k = k
  94. vector_search_retriever = VectorSearchRetriever(
  95. collection_name=collection_name,
  96. embedding_function=embedding_function,
  97. top_k=k,
  98. )
  99. ensemble_retriever = EnsembleRetriever(
  100. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  101. )
  102. compressor = RerankCompressor(
  103. embedding_function=embedding_function,
  104. top_n=k_reranker,
  105. reranking_function=reranking_function,
  106. r_score=r,
  107. )
  108. compression_retriever = ContextualCompressionRetriever(
  109. base_compressor=compressor, base_retriever=ensemble_retriever
  110. )
  111. result = compression_retriever.invoke(query)
  112. result = {
  113. "distances": [[d.metadata.get("score") for d in result]],
  114. "documents": [[d.page_content for d in result]],
  115. "metadatas": [[d.metadata for d in result]],
  116. }
  117. log.info(
  118. "query_doc_with_hybrid_search:result "
  119. + f'{result["metadatas"]} {result["distances"]}'
  120. )
  121. return result
  122. except Exception as e:
  123. raise e
  124. def merge_get_results(get_results: list[dict]) -> dict:
  125. # Initialize lists to store combined data
  126. combined_documents = []
  127. combined_metadatas = []
  128. combined_ids = []
  129. for data in get_results:
  130. combined_documents.extend(data["documents"][0])
  131. combined_metadatas.extend(data["metadatas"][0])
  132. combined_ids.extend(data["ids"][0])
  133. # Create the output dictionary
  134. result = {
  135. "documents": [combined_documents],
  136. "metadatas": [combined_metadatas],
  137. "ids": [combined_ids],
  138. }
  139. return result
  140. def merge_and_sort_query_results(
  141. query_results: list[dict], k: int, reverse: bool = False
  142. ) -> dict:
  143. # Initialize lists to store combined data
  144. combined = []
  145. seen_hashes = set() # To store unique document hashes
  146. for data in query_results:
  147. distances = data["distances"][0]
  148. documents = data["documents"][0]
  149. metadatas = data["metadatas"][0]
  150. for distance, document, metadata in zip(distances, documents, metadatas):
  151. if isinstance(document, str):
  152. doc_hash = hashlib.md5(
  153. document.encode()
  154. ).hexdigest() # Compute a hash for uniqueness
  155. if doc_hash not in seen_hashes:
  156. seen_hashes.add(doc_hash)
  157. combined.append((distance, document, metadata))
  158. # Sort the list based on distances
  159. combined.sort(key=lambda x: x[0], reverse=reverse)
  160. # Slice to keep only the top k elements
  161. sorted_distances, sorted_documents, sorted_metadatas = (
  162. zip(*combined[:k]) if combined else ([], [], [])
  163. )
  164. # Create and return the output dictionary
  165. return {
  166. "distances": [list(sorted_distances)],
  167. "documents": [list(sorted_documents)],
  168. "metadatas": [list(sorted_metadatas)],
  169. }
  170. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  171. results = []
  172. for collection_name in collection_names:
  173. if collection_name:
  174. try:
  175. result = get_doc(collection_name=collection_name)
  176. if result is not None:
  177. results.append(result.model_dump())
  178. except Exception as e:
  179. log.exception(f"Error when querying the collection: {e}")
  180. else:
  181. pass
  182. return merge_get_results(results)
  183. def query_collection(
  184. collection_names: list[str],
  185. queries: list[str],
  186. embedding_function,
  187. k: int,
  188. ) -> dict:
  189. results = []
  190. for query in queries:
  191. query_embedding = embedding_function(query)
  192. for collection_name in collection_names:
  193. if collection_name:
  194. try:
  195. result = query_doc(
  196. collection_name=collection_name,
  197. k=k,
  198. query_embedding=query_embedding,
  199. )
  200. if result is not None:
  201. results.append(result.model_dump())
  202. except Exception as e:
  203. log.exception(f"Error when querying the collection: {e}")
  204. else:
  205. pass
  206. if VECTOR_DB == "chroma":
  207. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  208. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  209. return merge_and_sort_query_results(results, k=k, reverse=False)
  210. else:
  211. return merge_and_sort_query_results(results, k=k, reverse=True)
  212. def query_collection_with_hybrid_search(
  213. collection_names: list[str],
  214. queries: list[str],
  215. embedding_function,
  216. k: int,
  217. reranking_function,
  218. k_reranker: int,
  219. r: float,
  220. ) -> dict:
  221. results = []
  222. error = False
  223. for collection_name in collection_names:
  224. try:
  225. for query in queries:
  226. result = query_doc_with_hybrid_search(
  227. collection_name=collection_name,
  228. query=query,
  229. embedding_function=embedding_function,
  230. k=k,
  231. reranking_function=reranking_function,
  232. k_reranker=k_reranker,
  233. r=r,
  234. )
  235. results.append(result)
  236. except Exception as e:
  237. log.exception(
  238. "Error when querying the collection with " f"hybrid_search: {e}"
  239. )
  240. error = True
  241. if error:
  242. raise Exception(
  243. "Hybrid search failed for all collections. Using Non hybrid search as fallback."
  244. )
  245. if VECTOR_DB == "chroma":
  246. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  247. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  248. return merge_and_sort_query_results(results, k=k, reverse=False)
  249. else:
  250. return merge_and_sort_query_results(results, k=k, reverse=True)
  251. def get_embedding_function(
  252. embedding_engine,
  253. embedding_model,
  254. embedding_function,
  255. url,
  256. key,
  257. embedding_batch_size,
  258. ):
  259. if embedding_engine == "":
  260. return lambda query, user=None: embedding_function.encode(query).tolist()
  261. elif embedding_engine in ["ollama", "openai"]:
  262. func = lambda query, user=None: generate_embeddings(
  263. engine=embedding_engine,
  264. model=embedding_model,
  265. text=query,
  266. url=url,
  267. key=key,
  268. user=user,
  269. )
  270. def generate_multiple(query, user, func):
  271. if isinstance(query, list):
  272. embeddings = []
  273. for i in range(0, len(query), embedding_batch_size):
  274. embeddings.extend(
  275. func(query[i : i + embedding_batch_size], user=user)
  276. )
  277. return embeddings
  278. else:
  279. return func(query, user)
  280. return lambda query, user=None: generate_multiple(query, user, func)
  281. else:
  282. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  283. def get_sources_from_files(
  284. request,
  285. files,
  286. queries,
  287. embedding_function,
  288. k,
  289. reranking_function,
  290. k_reranker,
  291. r,
  292. hybrid_search,
  293. full_context=False,
  294. ):
  295. log.debug(
  296. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  297. )
  298. extracted_collections = []
  299. relevant_contexts = []
  300. for file in files:
  301. context = None
  302. if file.get("docs"):
  303. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  304. context = {
  305. "documents": [[doc.get("content") for doc in file.get("docs")]],
  306. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  307. }
  308. elif file.get("context") == "full":
  309. # Manual Full Mode Toggle
  310. context = {
  311. "documents": [[file.get("file").get("data", {}).get("content")]],
  312. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  313. }
  314. elif (
  315. file.get("type") != "web_search"
  316. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  317. ):
  318. # BYPASS_EMBEDDING_AND_RETRIEVAL
  319. if file.get("type") == "collection":
  320. file_ids = file.get("data", {}).get("file_ids", [])
  321. documents = []
  322. metadatas = []
  323. for file_id in file_ids:
  324. file_object = Files.get_file_by_id(file_id)
  325. if file_object:
  326. documents.append(file_object.data.get("content", ""))
  327. metadatas.append(
  328. {
  329. "file_id": file_id,
  330. "name": file_object.filename,
  331. "source": file_object.filename,
  332. }
  333. )
  334. context = {
  335. "documents": [documents],
  336. "metadatas": [metadatas],
  337. }
  338. elif file.get("id"):
  339. file_object = Files.get_file_by_id(file.get("id"))
  340. if file_object:
  341. context = {
  342. "documents": [[file_object.data.get("content", "")]],
  343. "metadatas": [
  344. [
  345. {
  346. "file_id": file.get("id"),
  347. "name": file_object.filename,
  348. "source": file_object.filename,
  349. }
  350. ]
  351. ],
  352. }
  353. elif file.get("file").get("data"):
  354. context = {
  355. "documents": [[file.get("file").get("data", {}).get("content")]],
  356. "metadatas": [
  357. [file.get("file").get("data", {}).get("metadata", {})]
  358. ],
  359. }
  360. else:
  361. collection_names = []
  362. if file.get("type") == "collection":
  363. if file.get("legacy"):
  364. collection_names = file.get("collection_names", [])
  365. else:
  366. collection_names.append(file["id"])
  367. elif file.get("collection_name"):
  368. collection_names.append(file["collection_name"])
  369. elif file.get("id"):
  370. if file.get("legacy"):
  371. collection_names.append(f"{file['id']}")
  372. else:
  373. collection_names.append(f"file-{file['id']}")
  374. collection_names = set(collection_names).difference(extracted_collections)
  375. if not collection_names:
  376. log.debug(f"skipping {file} as it has already been extracted")
  377. continue
  378. if full_context:
  379. try:
  380. context = get_all_items_from_collections(collection_names)
  381. except Exception as e:
  382. log.exception(e)
  383. else:
  384. try:
  385. context = None
  386. if file.get("type") == "text":
  387. context = file["content"]
  388. else:
  389. if hybrid_search:
  390. try:
  391. context = query_collection_with_hybrid_search(
  392. collection_names=collection_names,
  393. queries=queries,
  394. embedding_function=embedding_function,
  395. k=k,
  396. reranking_function=reranking_function,
  397. k_reranker=k_reranker,
  398. r=r,
  399. )
  400. except Exception as e:
  401. log.debug(
  402. "Error when using hybrid search, using"
  403. " non hybrid search as fallback."
  404. )
  405. if (not hybrid_search) or (context is None):
  406. context = query_collection(
  407. collection_names=collection_names,
  408. queries=queries,
  409. embedding_function=embedding_function,
  410. k=k,
  411. )
  412. except Exception as e:
  413. log.exception(e)
  414. extracted_collections.extend(collection_names)
  415. if context:
  416. if "data" in file:
  417. del file["data"]
  418. relevant_contexts.append({**context, "file": file})
  419. sources = []
  420. for context in relevant_contexts:
  421. try:
  422. if "documents" in context:
  423. if "metadatas" in context:
  424. source = {
  425. "source": context["file"],
  426. "document": context["documents"][0],
  427. "metadata": context["metadatas"][0],
  428. }
  429. if "distances" in context and context["distances"]:
  430. source["distances"] = context["distances"][0]
  431. sources.append(source)
  432. except Exception as e:
  433. log.exception(e)
  434. return sources
  435. def get_model_path(model: str, update_model: bool = False):
  436. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  437. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  438. local_files_only = not update_model
  439. if OFFLINE_MODE:
  440. local_files_only = True
  441. snapshot_kwargs = {
  442. "cache_dir": cache_dir,
  443. "local_files_only": local_files_only,
  444. }
  445. log.debug(f"model: {model}")
  446. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  447. # Inspiration from upstream sentence_transformers
  448. if (
  449. os.path.exists(model)
  450. or ("\\" in model or model.count("/") > 1)
  451. and local_files_only
  452. ):
  453. # If fully qualified path exists, return input, else set repo_id
  454. return model
  455. elif "/" not in model:
  456. # Set valid repo_id for model short-name
  457. model = "sentence-transformers" + "/" + model
  458. snapshot_kwargs["repo_id"] = model
  459. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  460. try:
  461. model_repo_path = snapshot_download(**snapshot_kwargs)
  462. log.debug(f"model_repo_path: {model_repo_path}")
  463. return model_repo_path
  464. except Exception as e:
  465. log.exception(f"Cannot determine model snapshot path: {e}")
  466. return model
  467. def generate_openai_batch_embeddings(
  468. model: str,
  469. texts: list[str],
  470. url: str = "https://api.openai.com/v1",
  471. key: str = "",
  472. user: UserModel = None,
  473. ) -> Optional[list[list[float]]]:
  474. try:
  475. r = requests.post(
  476. f"{url}/embeddings",
  477. headers={
  478. "Content-Type": "application/json",
  479. "Authorization": f"Bearer {key}",
  480. **(
  481. {
  482. "X-OpenWebUI-User-Name": user.name,
  483. "X-OpenWebUI-User-Id": user.id,
  484. "X-OpenWebUI-User-Email": user.email,
  485. "X-OpenWebUI-User-Role": user.role,
  486. }
  487. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  488. else {}
  489. ),
  490. },
  491. json={"input": texts, "model": model},
  492. )
  493. r.raise_for_status()
  494. data = r.json()
  495. if "data" in data:
  496. return [elem["embedding"] for elem in data["data"]]
  497. else:
  498. raise "Something went wrong :/"
  499. except Exception as e:
  500. log.exception(f"Error generating openai batch embeddings: {e}")
  501. return None
  502. def generate_ollama_batch_embeddings(
  503. model: str, texts: list[str], url: str, key: str = "", user: UserModel = None
  504. ) -> Optional[list[list[float]]]:
  505. try:
  506. r = requests.post(
  507. f"{url}/api/embed",
  508. headers={
  509. "Content-Type": "application/json",
  510. "Authorization": f"Bearer {key}",
  511. **(
  512. {
  513. "X-OpenWebUI-User-Name": user.name,
  514. "X-OpenWebUI-User-Id": user.id,
  515. "X-OpenWebUI-User-Email": user.email,
  516. "X-OpenWebUI-User-Role": user.role,
  517. }
  518. if ENABLE_FORWARD_USER_INFO_HEADERS
  519. else {}
  520. ),
  521. },
  522. json={"input": texts, "model": model},
  523. )
  524. r.raise_for_status()
  525. data = r.json()
  526. if "embeddings" in data:
  527. return data["embeddings"]
  528. else:
  529. raise "Something went wrong :/"
  530. except Exception as e:
  531. log.exception(f"Error generating ollama batch embeddings: {e}")
  532. return None
  533. def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
  534. url = kwargs.get("url", "")
  535. key = kwargs.get("key", "")
  536. user = kwargs.get("user")
  537. if engine == "ollama":
  538. if isinstance(text, list):
  539. embeddings = generate_ollama_batch_embeddings(
  540. **{"model": model, "texts": text, "url": url, "key": key, "user": user}
  541. )
  542. else:
  543. embeddings = generate_ollama_batch_embeddings(
  544. **{
  545. "model": model,
  546. "texts": [text],
  547. "url": url,
  548. "key": key,
  549. "user": user,
  550. }
  551. )
  552. return embeddings[0] if isinstance(text, str) else embeddings
  553. elif engine == "openai":
  554. if isinstance(text, list):
  555. embeddings = generate_openai_batch_embeddings(model, text, url, key, user)
  556. else:
  557. embeddings = generate_openai_batch_embeddings(model, [text], url, key, user)
  558. return embeddings[0] if isinstance(text, str) else embeddings
  559. import operator
  560. from typing import Optional, Sequence
  561. from langchain_core.callbacks import Callbacks
  562. from langchain_core.documents import BaseDocumentCompressor, Document
  563. class RerankCompressor(BaseDocumentCompressor):
  564. embedding_function: Any
  565. top_n: int
  566. reranking_function: Any
  567. r_score: float
  568. class Config:
  569. extra = "forbid"
  570. arbitrary_types_allowed = True
  571. def compress_documents(
  572. self,
  573. documents: Sequence[Document],
  574. query: str,
  575. callbacks: Optional[Callbacks] = None,
  576. ) -> Sequence[Document]:
  577. reranking = self.reranking_function is not None
  578. if reranking:
  579. scores = self.reranking_function.predict(
  580. [(query, doc.page_content) for doc in documents]
  581. )
  582. else:
  583. from sentence_transformers import util
  584. query_embedding = self.embedding_function(query)
  585. document_embedding = self.embedding_function(
  586. [doc.page_content for doc in documents]
  587. )
  588. scores = util.cos_sim(query_embedding, document_embedding)[0]
  589. docs_with_scores = list(zip(documents, scores.tolist()))
  590. if self.r_score:
  591. docs_with_scores = [
  592. (d, s) for d, s in docs_with_scores if s >= self.r_score
  593. ]
  594. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  595. final_results = []
  596. for doc, doc_score in result[: self.top_n]:
  597. metadata = doc.metadata
  598. metadata["score"] = doc_score
  599. doc = Document(
  600. page_content=doc.page_content,
  601. metadata=metadata,
  602. )
  603. final_results.append(doc)
  604. return final_results