| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092 | import loggingimport osfrom typing import Optional, Unionimport requestsimport hashlibfrom concurrent.futures import ThreadPoolExecutorimport timeimport refrom urllib.parse import quotefrom huggingface_hub import snapshot_downloadfrom langchain.retrievers import ContextualCompressionRetriever, EnsembleRetrieverfrom langchain_community.retrievers import BM25Retrieverfrom langchain_core.documents import Documentfrom open_webui.config import VECTOR_DBfrom open_webui.retrieval.vector.factory import VECTOR_DB_CLIENTfrom open_webui.models.users import UserModelfrom open_webui.models.files import Filesfrom open_webui.models.knowledge import Knowledgesfrom open_webui.models.chats import Chatsfrom open_webui.models.notes import Notesfrom open_webui.retrieval.vector.main import GetResultfrom open_webui.utils.access_control import has_accessfrom open_webui.utils.misc import get_message_listfrom open_webui.retrieval.web.utils import get_web_loaderfrom open_webui.retrieval.loaders.youtube import YoutubeLoaderfrom open_webui.env import (    SRC_LOG_LEVELS,    OFFLINE_MODE,    ENABLE_FORWARD_USER_INFO_HEADERS,)from open_webui.config import (    RAG_EMBEDDING_QUERY_PREFIX,    RAG_EMBEDDING_CONTENT_PREFIX,    RAG_EMBEDDING_PREFIX_FIELD_NAME,)log = logging.getLogger(__name__)log.setLevel(SRC_LOG_LEVELS["RAG"])from typing import Anyfrom langchain_core.callbacks import CallbackManagerForRetrieverRunfrom langchain_core.retrievers import BaseRetrieverdef is_youtube_url(url: str) -> bool:    youtube_regex = r"^(https?://)?(www\.)?(youtube\.com|youtu\.be)/.+$"    return re.match(youtube_regex, url) is not Nonedef get_loader(request, url: str):    if is_youtube_url(url):        return YoutubeLoader(            url,            language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,            proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,        )    else:        return get_web_loader(            url,            verify_ssl=request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION,            requests_per_second=request.app.state.config.WEB_LOADER_CONCURRENT_REQUESTS,        )def get_content_from_url(request, url: str) -> str:    loader = get_loader(request, url)    docs = loader.load()    content = " ".join([doc.page_content for doc in docs])    return content, docsclass VectorSearchRetriever(BaseRetriever):    collection_name: Any    embedding_function: Any    top_k: int    def _get_relevant_documents(        self,        query: str,        *,        run_manager: CallbackManagerForRetrieverRun,    ) -> list[Document]:        result = VECTOR_DB_CLIENT.search(            collection_name=self.collection_name,            vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],            limit=self.top_k,        )        ids = result.ids[0]        metadatas = result.metadatas[0]        documents = result.documents[0]        results = []        for idx in range(len(ids)):            results.append(                Document(                    metadata=metadatas[idx],                    page_content=documents[idx],                )            )        return resultsdef query_doc(    collection_name: str, query_embedding: list[float], k: int, user: UserModel = None):    try:        log.debug(f"query_doc:doc {collection_name}")        result = VECTOR_DB_CLIENT.search(            collection_name=collection_name,            vectors=[query_embedding],            limit=k,        )        if result:            log.info(f"query_doc:result {result.ids} {result.metadatas}")        return result    except Exception as e:        log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")        raise edef get_doc(collection_name: str, user: UserModel = None):    try:        log.debug(f"get_doc:doc {collection_name}")        result = VECTOR_DB_CLIENT.get(collection_name=collection_name)        if result:            log.info(f"query_doc:result {result.ids} {result.metadatas}")        return result    except Exception as e:        log.exception(f"Error getting doc {collection_name}: {e}")        raise edef query_doc_with_hybrid_search(    collection_name: str,    collection_result: GetResult,    query: str,    embedding_function,    k: int,    reranking_function,    k_reranker: int,    r: float,    hybrid_bm25_weight: float,) -> dict:    try:        if (            not collection_result            or not hasattr(collection_result, "documents")            or not collection_result.documents            or len(collection_result.documents) == 0            or not collection_result.documents[0]        ):            log.warning(f"query_doc_with_hybrid_search:no_docs {collection_name}")            return {"documents": [], "metadatas": [], "distances": []}        log.debug(f"query_doc_with_hybrid_search:doc {collection_name}")        bm25_retriever = BM25Retriever.from_texts(            texts=collection_result.documents[0],            metadatas=collection_result.metadatas[0],        )        bm25_retriever.k = k        vector_search_retriever = VectorSearchRetriever(            collection_name=collection_name,            embedding_function=embedding_function,            top_k=k,        )        if hybrid_bm25_weight <= 0:            ensemble_retriever = EnsembleRetriever(                retrievers=[vector_search_retriever], weights=[1.0]            )        elif hybrid_bm25_weight >= 1:            ensemble_retriever = EnsembleRetriever(                retrievers=[bm25_retriever], weights=[1.0]            )        else:            ensemble_retriever = EnsembleRetriever(                retrievers=[bm25_retriever, vector_search_retriever],                weights=[hybrid_bm25_weight, 1.0 - hybrid_bm25_weight],            )        compressor = RerankCompressor(            embedding_function=embedding_function,            top_n=k_reranker,            reranking_function=reranking_function,            r_score=r,        )        compression_retriever = ContextualCompressionRetriever(            base_compressor=compressor, base_retriever=ensemble_retriever        )        result = compression_retriever.invoke(query)        distances = [d.metadata.get("score") for d in result]        documents = [d.page_content for d in result]        metadatas = [d.metadata for d in result]        # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker        if k < k_reranker:            sorted_items = sorted(                zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True            )            sorted_items = sorted_items[:k]            if sorted_items:                distances, documents, metadatas = map(list, zip(*sorted_items))            else:                distances, documents, metadatas = [], [], []        result = {            "distances": [distances],            "documents": [documents],            "metadatas": [metadatas],        }        log.info(            "query_doc_with_hybrid_search:result "            + f'{result["metadatas"]} {result["distances"]}'        )        return result    except Exception as e:        log.exception(f"Error querying doc {collection_name} with hybrid search: {e}")        raise edef merge_get_results(get_results: list[dict]) -> dict:    # Initialize lists to store combined data    combined_documents = []    combined_metadatas = []    combined_ids = []    for data in get_results:        combined_documents.extend(data["documents"][0])        combined_metadatas.extend(data["metadatas"][0])        combined_ids.extend(data["ids"][0])    # Create the output dictionary    result = {        "documents": [combined_documents],        "metadatas": [combined_metadatas],        "ids": [combined_ids],    }    return resultdef merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:    # Initialize lists to store combined data    combined = dict()  # To store documents with unique document hashes    for data in query_results:        if (            len(data.get("distances", [])) == 0            or len(data.get("documents", [])) == 0            or len(data.get("metadatas", [])) == 0        ):            continue        distances = data["distances"][0]        documents = data["documents"][0]        metadatas = data["metadatas"][0]        for distance, document, metadata in zip(distances, documents, metadatas):            if isinstance(document, str):                doc_hash = hashlib.sha256(                    document.encode()                ).hexdigest()  # Compute a hash for uniqueness                if doc_hash not in combined.keys():                    combined[doc_hash] = (distance, document, metadata)                    continue  # if doc is new, no further comparison is needed                # if doc is alredy in, but new distance is better, update                if distance > combined[doc_hash][0]:                    combined[doc_hash] = (distance, document, metadata)    combined = list(combined.values())    # Sort the list based on distances    combined.sort(key=lambda x: x[0], reverse=True)    # Slice to keep only the top k elements    sorted_distances, sorted_documents, sorted_metadatas = (        zip(*combined[:k]) if combined else ([], [], [])    )    # Create and return the output dictionary    return {        "distances": [list(sorted_distances)],        "documents": [list(sorted_documents)],        "metadatas": [list(sorted_metadatas)],    }def get_all_items_from_collections(collection_names: list[str]) -> dict:    results = []    for collection_name in collection_names:        if collection_name:            try:                result = get_doc(collection_name=collection_name)                if result is not None:                    results.append(result.model_dump())            except Exception as e:                log.exception(f"Error when querying the collection: {e}")        else:            pass    return merge_get_results(results)def query_collection(    collection_names: list[str],    queries: list[str],    embedding_function,    k: int,) -> dict:    results = []    error = False    def process_query_collection(collection_name, query_embedding):        try:            if collection_name:                result = query_doc(                    collection_name=collection_name,                    k=k,                    query_embedding=query_embedding,                )                if result is not None:                    return result.model_dump(), None            return None, None        except Exception as e:            log.exception(f"Error when querying the collection: {e}")            return None, e    # Generate all query embeddings (in one call)    query_embeddings = embedding_function(queries, prefix=RAG_EMBEDDING_QUERY_PREFIX)    log.debug(        f"query_collection: processing {len(queries)} queries across {len(collection_names)} collections"    )    with ThreadPoolExecutor() as executor:        future_results = []        for query_embedding in query_embeddings:            for collection_name in collection_names:                result = executor.submit(                    process_query_collection, collection_name, query_embedding                )                future_results.append(result)        task_results = [future.result() for future in future_results]    for result, err in task_results:        if err is not None:            error = True        elif result is not None:            results.append(result)    if error and not results:        log.warning("All collection queries failed. No results returned.")    return merge_and_sort_query_results(results, k=k)def query_collection_with_hybrid_search(    collection_names: list[str],    queries: list[str],    embedding_function,    k: int,    reranking_function,    k_reranker: int,    r: float,    hybrid_bm25_weight: float,) -> dict:    results = []    error = False    # Fetch collection data once per collection sequentially    # Avoid fetching the same data multiple times later    collection_results = {}    for collection_name in collection_names:        try:            log.debug(                f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}"            )            collection_results[collection_name] = VECTOR_DB_CLIENT.get(                collection_name=collection_name            )        except Exception as e:            log.exception(f"Failed to fetch collection {collection_name}: {e}")            collection_results[collection_name] = None    log.info(        f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."    )    def process_query(collection_name, query):        try:            result = query_doc_with_hybrid_search(                collection_name=collection_name,                collection_result=collection_results[collection_name],                query=query,                embedding_function=embedding_function,                k=k,                reranking_function=reranking_function,                k_reranker=k_reranker,                r=r,                hybrid_bm25_weight=hybrid_bm25_weight,            )            return result, None        except Exception as e:            log.exception(f"Error when querying the collection with hybrid_search: {e}")            return None, e    # Prepare tasks for all collections and queries    # Avoid running any tasks for collections that failed to fetch data (have assigned None)    tasks = [        (cn, q)        for cn in collection_names        if collection_results[cn] is not None        for q in queries    ]    with ThreadPoolExecutor() as executor:        future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]        task_results = [future.result() for future in future_results]    for result, err in task_results:        if err is not None:            error = True        elif result is not None:            results.append(result)    if error and not results:        raise Exception(            "Hybrid search failed for all collections. Using Non-hybrid search as fallback."        )    return merge_and_sort_query_results(results, k=k)def get_embedding_function(    embedding_engine,    embedding_model,    embedding_function,    url,    key,    embedding_batch_size,    azure_api_version=None,):    if embedding_engine == "":        return lambda query, prefix=None, user=None: embedding_function.encode(            query, **({"prompt": prefix} if prefix else {})        ).tolist()    elif embedding_engine in ["ollama", "openai", "azure_openai"]:        func = lambda query, prefix=None, user=None: generate_embeddings(            engine=embedding_engine,            model=embedding_model,            text=query,            prefix=prefix,            url=url,            key=key,            user=user,            azure_api_version=azure_api_version,        )        def generate_multiple(query, prefix, user, func):            if isinstance(query, list):                embeddings = []                for i in range(0, len(query), embedding_batch_size):                    batch_embeddings = func(                        query[i : i + embedding_batch_size],                        prefix=prefix,                        user=user,                    )                    if isinstance(batch_embeddings, list):                        embeddings.extend(batch_embeddings)                return embeddings            else:                return func(query, prefix, user)        return lambda query, prefix=None, user=None: generate_multiple(            query, prefix, user, func        )    else:        raise ValueError(f"Unknown embedding engine: {embedding_engine}")def get_reranking_function(reranking_engine, reranking_model, reranking_function):    if reranking_function is None:        return None    if reranking_engine == "external":        return lambda sentences, user=None: reranking_function.predict(            sentences, user=user        )    else:        return lambda sentences, user=None: reranking_function.predict(sentences)def get_sources_from_items(    request,    items,    queries,    embedding_function,    k,    reranking_function,    k_reranker,    r,    hybrid_bm25_weight,    hybrid_search,    full_context=False,    user: Optional[UserModel] = None,):    log.debug(        f"items: {items} {queries} {embedding_function} {reranking_function} {full_context}"    )    extracted_collections = []    query_results = []    for item in items:        query_result = None        collection_names = []        if item.get("type") == "text":            # Raw Text            # Used during temporary chat file uploads or web page & youtube attachements            if item.get("context") == "full":                if item.get("file"):                    # if item has file data, use it                    query_result = {                        "documents": [                            [item.get("file", {}).get("data", {}).get("content")]                        ],                        "metadatas": [[item.get("file", {}).get("meta", {})]],                    }            if query_result is None:                # Fallback                if item.get("collection_name"):                    # If item has a collection name, use it                    collection_names.append(item.get("collection_name"))                elif item.get("file"):                    # If item has file data, use it                    query_result = {                        "documents": [                            [item.get("file", {}).get("data", {}).get("content")]                        ],                        "metadatas": [[item.get("file", {}).get("meta", {})]],                    }                else:                    # Fallback to item content                    query_result = {                        "documents": [[item.get("content")]],                        "metadatas": [                            [{"file_id": item.get("id"), "name": item.get("name")}]                        ],                    }        elif item.get("type") == "note":            # Note Attached            note = Notes.get_note_by_id(item.get("id"))            if note and (                user.role == "admin"                or note.user_id == user.id                or has_access(user.id, "read", note.access_control)            ):                # User has access to the note                query_result = {                    "documents": [[note.data.get("content", {}).get("md", "")]],                    "metadatas": [[{"file_id": note.id, "name": note.title}]],                }        elif item.get("type") == "chat":            # Chat Attached            chat = Chats.get_chat_by_id(item.get("id"))            if chat and (user.role == "admin" or chat.user_id == user.id):                messages_map = chat.chat.get("history", {}).get("messages", {})                message_id = chat.chat.get("history", {}).get("currentId")                if messages_map and message_id:                    # Reconstruct the message list in order                    message_list = get_message_list(messages_map, message_id)                    message_history = "\n".join(                        [                            f"#### {m.get('role', 'user').capitalize()}\n{m.get('content')}\n"                            for m in message_list                        ]                    )                    # User has access to the chat                    query_result = {                        "documents": [[message_history]],                        "metadatas": [[{"file_id": chat.id, "name": chat.title}]],                    }        elif item.get("type") == "url":            content, docs = get_content_from_url(request, item.get("url"))            if docs:                query_result = {                    "documents": [[content]],                    "metadatas": [[{"url": item.get("url"), "name": item.get("url")}]],                }        elif item.get("type") == "file":            if (                item.get("context") == "full"                or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL            ):                if item.get("file", {}).get("data", {}).get("content", ""):                    # Manual Full Mode Toggle                    # Used from chat file modal, we can assume that the file content will be available from item.get("file").get("data", {}).get("content")                    query_result = {                        "documents": [                            [item.get("file", {}).get("data", {}).get("content", "")]                        ],                        "metadatas": [                            [                                {                                    "file_id": item.get("id"),                                    "name": item.get("name"),                                    **item.get("file")                                    .get("data", {})                                    .get("metadata", {}),                                }                            ]                        ],                    }                elif item.get("id"):                    file_object = Files.get_file_by_id(item.get("id"))                    if file_object:                        query_result = {                            "documents": [[file_object.data.get("content", "")]],                            "metadatas": [                                [                                    {                                        "file_id": item.get("id"),                                        "name": file_object.filename,                                        "source": file_object.filename,                                    }                                ]                            ],                        }            else:                # Fallback to collection names                if item.get("legacy"):                    collection_names.append(f"{item['id']}")                else:                    collection_names.append(f"file-{item['id']}")        elif item.get("type") == "collection":            if (                item.get("context") == "full"                or request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL            ):                # Manual Full Mode Toggle for Collection                knowledge_base = Knowledges.get_knowledge_by_id(item.get("id"))                if knowledge_base and (                    user.role == "admin"                    or knowledge_base.user_id == user.id                    or has_access(user.id, "read", knowledge_base.access_control)                ):                    file_ids = knowledge_base.data.get("file_ids", [])                    documents = []                    metadatas = []                    for file_id in file_ids:                        file_object = Files.get_file_by_id(file_id)                        if file_object:                            documents.append(file_object.data.get("content", ""))                            metadatas.append(                                {                                    "file_id": file_id,                                    "name": file_object.filename,                                    "source": file_object.filename,                                }                            )                    query_result = {                        "documents": [documents],                        "metadatas": [metadatas],                    }            else:                # Fallback to collection names                if item.get("legacy"):                    collection_names = item.get("collection_names", [])                else:                    collection_names.append(item["id"])        elif item.get("docs"):            # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL            query_result = {                "documents": [[doc.get("content") for doc in item.get("docs")]],                "metadatas": [[doc.get("metadata") for doc in item.get("docs")]],            }        elif item.get("collection_name"):            # Direct Collection Name            collection_names.append(item["collection_name"])        elif item.get("collection_names"):            # Collection Names List            collection_names.extend(item["collection_names"])        # If query_result is None        # Fallback to collection names and vector search the collections        if query_result is None and collection_names:            collection_names = set(collection_names).difference(extracted_collections)            if not collection_names:                log.debug(f"skipping {item} as it has already been extracted")                continue            try:                if full_context:                    query_result = get_all_items_from_collections(collection_names)                else:                    query_result = None  # Initialize to None                    if hybrid_search:                        try:                            query_result = query_collection_with_hybrid_search(                                collection_names=collection_names,                                queries=queries,                                embedding_function=embedding_function,                                k=k,                                reranking_function=reranking_function,                                k_reranker=k_reranker,                                r=r,                                hybrid_bm25_weight=hybrid_bm25_weight,                            )                        except Exception as e:                            log.debug(                                "Error when using hybrid search, using non hybrid search as fallback."                            )                    # fallback to non-hybrid search                    if not hybrid_search and query_result is None:                        query_result = query_collection(                            collection_names=collection_names,                            queries=queries,                            embedding_function=embedding_function,                            k=k,                        )            except Exception as e:                log.exception(e)            extracted_collections.extend(collection_names)        if query_result:            if "data" in item:                del item["data"]            query_results.append({**query_result, "file": item})    sources = []    for query_result in query_results:        try:            if "documents" in query_result:                if "metadatas" in query_result:                    source = {                        "source": query_result["file"],                        "document": query_result["documents"][0],                        "metadata": query_result["metadatas"][0],                    }                    if "distances" in query_result and query_result["distances"]:                        source["distances"] = query_result["distances"][0]                    sources.append(source)        except Exception as e:            log.exception(e)    return sourcesdef get_model_path(model: str, update_model: bool = False):    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")    local_files_only = not update_model    if OFFLINE_MODE:        local_files_only = True    snapshot_kwargs = {        "cache_dir": cache_dir,        "local_files_only": local_files_only,    }    log.debug(f"model: {model}")    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")    # Inspiration from upstream sentence_transformers    if (        os.path.exists(model)        or ("\\" in model or model.count("/") > 1)        and local_files_only    ):        # If fully qualified path exists, return input, else set repo_id        return model    elif "/" not in model:        # Set valid repo_id for model short-name        model = "sentence-transformers" + "/" + model    snapshot_kwargs["repo_id"] = model    # Attempt to query the huggingface_hub library to determine the local path and/or to update    try:        model_repo_path = snapshot_download(**snapshot_kwargs)        log.debug(f"model_repo_path: {model_repo_path}")        return model_repo_path    except Exception as e:        log.exception(f"Cannot determine model snapshot path: {e}")        return modeldef generate_openai_batch_embeddings(    model: str,    texts: list[str],    url: str = "https://api.openai.com/v1",    key: str = "",    prefix: str = None,    user: UserModel = None,) -> Optional[list[list[float]]]:    try:        log.debug(            f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}"        )        json_data = {"input": texts, "model": model}        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):            json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix        r = requests.post(            f"{url}/embeddings",            headers={                "Content-Type": "application/json",                "Authorization": f"Bearer {key}",                **(                    {                        "X-OpenWebUI-User-Name": quote(user.name, safe=" "),                        "X-OpenWebUI-User-Id": user.id,                        "X-OpenWebUI-User-Email": user.email,                        "X-OpenWebUI-User-Role": user.role,                    }                    if ENABLE_FORWARD_USER_INFO_HEADERS and user                    else {}                ),            },            json=json_data,        )        r.raise_for_status()        data = r.json()        if "data" in data:            return [elem["embedding"] for elem in data["data"]]        else:            raise "Something went wrong :/"    except Exception as e:        log.exception(f"Error generating openai batch embeddings: {e}")        return Nonedef generate_azure_openai_batch_embeddings(    model: str,    texts: list[str],    url: str,    key: str = "",    version: str = "",    prefix: str = None,    user: UserModel = None,) -> Optional[list[list[float]]]:    try:        log.debug(            f"generate_azure_openai_batch_embeddings:deployment {model} batch size: {len(texts)}"        )        json_data = {"input": texts}        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):            json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix        url = f"{url}/openai/deployments/{model}/embeddings?api-version={version}"        for _ in range(5):            r = requests.post(                url,                headers={                    "Content-Type": "application/json",                    "api-key": key,                    **(                        {                            "X-OpenWebUI-User-Name": quote(user.name, safe=" "),                            "X-OpenWebUI-User-Id": user.id,                            "X-OpenWebUI-User-Email": user.email,                            "X-OpenWebUI-User-Role": user.role,                        }                        if ENABLE_FORWARD_USER_INFO_HEADERS and user                        else {}                    ),                },                json=json_data,            )            if r.status_code == 429:                retry = float(r.headers.get("Retry-After", "1"))                time.sleep(retry)                continue            r.raise_for_status()            data = r.json()            if "data" in data:                return [elem["embedding"] for elem in data["data"]]            else:                raise Exception("Something went wrong :/")        return None    except Exception as e:        log.exception(f"Error generating azure openai batch embeddings: {e}")        return Nonedef generate_ollama_batch_embeddings(    model: str,    texts: list[str],    url: str,    key: str = "",    prefix: str = None,    user: UserModel = None,) -> Optional[list[list[float]]]:    try:        log.debug(            f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"        )        json_data = {"input": texts, "model": model}        if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):            json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix        r = requests.post(            f"{url}/api/embed",            headers={                "Content-Type": "application/json",                "Authorization": f"Bearer {key}",                **(                    {                        "X-OpenWebUI-User-Name": quote(user.name, safe=" "),                        "X-OpenWebUI-User-Id": user.id,                        "X-OpenWebUI-User-Email": user.email,                        "X-OpenWebUI-User-Role": user.role,                    }                    if ENABLE_FORWARD_USER_INFO_HEADERS                    else {}                ),            },            json=json_data,        )        r.raise_for_status()        data = r.json()        if "embeddings" in data:            return data["embeddings"]        else:            raise "Something went wrong :/"    except Exception as e:        log.exception(f"Error generating ollama batch embeddings: {e}")        return Nonedef generate_embeddings(    engine: str,    model: str,    text: Union[str, list[str]],    prefix: Union[str, None] = None,    **kwargs,):    url = kwargs.get("url", "")    key = kwargs.get("key", "")    user = kwargs.get("user")    if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:        if isinstance(text, list):            text = [f"{prefix}{text_element}" for text_element in text]        else:            text = f"{prefix}{text}"    if engine == "ollama":        embeddings = generate_ollama_batch_embeddings(            **{                "model": model,                "texts": text if isinstance(text, list) else [text],                "url": url,                "key": key,                "prefix": prefix,                "user": user,            }        )        return embeddings[0] if isinstance(text, str) else embeddings    elif engine == "openai":        embeddings = generate_openai_batch_embeddings(            model, text if isinstance(text, list) else [text], url, key, prefix, user        )        return embeddings[0] if isinstance(text, str) else embeddings    elif engine == "azure_openai":        azure_api_version = kwargs.get("azure_api_version", "")        embeddings = generate_azure_openai_batch_embeddings(            model,            text if isinstance(text, list) else [text],            url,            key,            azure_api_version,            prefix,            user,        )        return embeddings[0] if isinstance(text, str) else embeddingsimport operatorfrom typing import Optional, Sequencefrom langchain_core.callbacks import Callbacksfrom langchain_core.documents import BaseDocumentCompressor, Documentclass RerankCompressor(BaseDocumentCompressor):    embedding_function: Any    top_n: int    reranking_function: Any    r_score: float    class Config:        extra = "forbid"        arbitrary_types_allowed = True    def compress_documents(        self,        documents: Sequence[Document],        query: str,        callbacks: Optional[Callbacks] = None,    ) -> Sequence[Document]:        reranking = self.reranking_function is not None        scores = None        if reranking:            scores = self.reranking_function(                [(query, doc.page_content) for doc in documents]            )        else:            from sentence_transformers import util            query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)            document_embedding = self.embedding_function(                [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX            )            scores = util.cos_sim(query_embedding, document_embedding)[0]        if scores is not None:            docs_with_scores = list(                zip(                    documents,                    scores.tolist() if not isinstance(scores, list) else scores,                )            )            if self.r_score:                docs_with_scores = [                    (d, s) for d, s in docs_with_scores if s >= self.r_score                ]            result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)            final_results = []            for doc, doc_score in result[: self.top_n]:                metadata = doc.metadata                metadata["score"] = doc_score                doc = Document(                    page_content=doc.page_content,                    metadata=metadata,                )                final_results.append(doc)            return final_results        else:            log.warning(                "No valid scores found, check your reranking function. Returning original documents."            )            return documents
 |