1
0

utils.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. import hashlib
  6. from concurrent.futures import ThreadPoolExecutor
  7. from huggingface_hub import snapshot_download
  8. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain_core.documents import Document
  11. from open_webui.config import VECTOR_DB
  12. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  13. from open_webui.models.users import UserModel
  14. from open_webui.models.files import Files
  15. from open_webui.retrieval.vector.main import GetResult
  16. from open_webui.env import (
  17. SRC_LOG_LEVELS,
  18. OFFLINE_MODE,
  19. ENABLE_FORWARD_USER_INFO_HEADERS,
  20. )
  21. from open_webui.config import (
  22. RAG_EMBEDDING_QUERY_PREFIX,
  23. RAG_EMBEDDING_CONTENT_PREFIX,
  24. RAG_EMBEDDING_PREFIX_FIELD_NAME,
  25. )
  26. log = logging.getLogger(__name__)
  27. log.setLevel(SRC_LOG_LEVELS["RAG"])
  28. from typing import Any
  29. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  30. from langchain_core.retrievers import BaseRetriever
  31. class VectorSearchRetriever(BaseRetriever):
  32. collection_name: Any
  33. embedding_function: Any
  34. top_k: int
  35. def _get_relevant_documents(
  36. self,
  37. query: str,
  38. *,
  39. run_manager: CallbackManagerForRetrieverRun,
  40. ) -> list[Document]:
  41. result = VECTOR_DB_CLIENT.search(
  42. collection_name=self.collection_name,
  43. vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],
  44. limit=self.top_k,
  45. )
  46. ids = result.ids[0]
  47. metadatas = result.metadatas[0]
  48. documents = result.documents[0]
  49. results = []
  50. for idx in range(len(ids)):
  51. results.append(
  52. Document(
  53. metadata=metadatas[idx],
  54. page_content=documents[idx],
  55. )
  56. )
  57. return results
  58. def query_doc(
  59. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  60. ):
  61. try:
  62. result = VECTOR_DB_CLIENT.search(
  63. collection_name=collection_name,
  64. vectors=[query_embedding],
  65. limit=k,
  66. )
  67. if result:
  68. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  69. return result
  70. except Exception as e:
  71. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  72. raise e
  73. def get_doc(collection_name: str, user: UserModel = None):
  74. try:
  75. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  76. if result:
  77. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  78. return result
  79. except Exception as e:
  80. log.exception(f"Error getting doc {collection_name}: {e}")
  81. raise e
  82. def query_doc_with_hybrid_search(
  83. collection_name: str,
  84. collection_result: GetResult,
  85. query: str,
  86. embedding_function,
  87. k: int,
  88. reranking_function,
  89. k_reranker: int,
  90. r: float,
  91. ) -> dict:
  92. try:
  93. bm25_retriever = BM25Retriever.from_texts(
  94. texts=collection_result.documents[0],
  95. metadatas=collection_result.metadatas[0],
  96. )
  97. bm25_retriever.k = k
  98. vector_search_retriever = VectorSearchRetriever(
  99. collection_name=collection_name,
  100. embedding_function=embedding_function,
  101. top_k=k,
  102. )
  103. ensemble_retriever = EnsembleRetriever(
  104. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  105. )
  106. compressor = RerankCompressor(
  107. embedding_function=embedding_function,
  108. top_n=k_reranker,
  109. reranking_function=reranking_function,
  110. r_score=r,
  111. )
  112. compression_retriever = ContextualCompressionRetriever(
  113. base_compressor=compressor, base_retriever=ensemble_retriever
  114. )
  115. result = compression_retriever.invoke(query)
  116. distances = [d.metadata.get("score") for d in result]
  117. documents = [d.page_content for d in result]
  118. metadatas = [d.metadata for d in result]
  119. # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
  120. if k < k_reranker:
  121. sorted_items = sorted(
  122. zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
  123. )
  124. sorted_items = sorted_items[:k]
  125. distances, documents, metadatas = map(list, zip(*sorted_items))
  126. result = {
  127. "distances": [distances],
  128. "documents": [documents],
  129. "metadatas": [metadatas],
  130. }
  131. log.info(
  132. "query_doc_with_hybrid_search:result "
  133. + f'{result["metadatas"]} {result["distances"]}'
  134. )
  135. return result
  136. except Exception as e:
  137. raise e
  138. def merge_get_results(get_results: list[dict]) -> dict:
  139. # Initialize lists to store combined data
  140. combined_documents = []
  141. combined_metadatas = []
  142. combined_ids = []
  143. for data in get_results:
  144. combined_documents.extend(data["documents"][0])
  145. combined_metadatas.extend(data["metadatas"][0])
  146. combined_ids.extend(data["ids"][0])
  147. # Create the output dictionary
  148. result = {
  149. "documents": [combined_documents],
  150. "metadatas": [combined_metadatas],
  151. "ids": [combined_ids],
  152. }
  153. return result
  154. def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
  155. # Initialize lists to store combined data
  156. combined = dict() # To store documents with unique document hashes
  157. for data in query_results:
  158. distances = data["distances"][0]
  159. documents = data["documents"][0]
  160. metadatas = data["metadatas"][0]
  161. for distance, document, metadata in zip(distances, documents, metadatas):
  162. if isinstance(document, str):
  163. doc_hash = hashlib.md5(
  164. document.encode()
  165. ).hexdigest() # Compute a hash for uniqueness
  166. if doc_hash not in combined.keys():
  167. combined[doc_hash] = (distance, document, metadata)
  168. continue # if doc is new, no further comparison is needed
  169. # if doc is alredy in, but new distance is better, update
  170. if distance > combined[doc_hash][0]:
  171. combined[doc_hash] = (distance, document, metadata)
  172. combined = list(combined.values())
  173. # Sort the list based on distances
  174. combined.sort(key=lambda x: x[0], reverse=True)
  175. # Slice to keep only the top k elements
  176. sorted_distances, sorted_documents, sorted_metadatas = (
  177. zip(*combined[:k]) if combined else ([], [], [])
  178. )
  179. # Create and return the output dictionary
  180. return {
  181. "distances": [list(sorted_distances)],
  182. "documents": [list(sorted_documents)],
  183. "metadatas": [list(sorted_metadatas)],
  184. }
  185. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  186. results = []
  187. for collection_name in collection_names:
  188. if collection_name:
  189. try:
  190. result = get_doc(collection_name=collection_name)
  191. if result is not None:
  192. results.append(result.model_dump())
  193. except Exception as e:
  194. log.exception(f"Error when querying the collection: {e}")
  195. else:
  196. pass
  197. return merge_get_results(results)
  198. def query_collection(
  199. collection_names: list[str],
  200. queries: list[str],
  201. embedding_function,
  202. k: int,
  203. ) -> dict:
  204. results = []
  205. for query in queries:
  206. query_embedding = embedding_function(query, prefix=RAG_EMBEDDING_QUERY_PREFIX)
  207. for collection_name in collection_names:
  208. if collection_name:
  209. try:
  210. result = query_doc(
  211. collection_name=collection_name,
  212. k=k,
  213. query_embedding=query_embedding,
  214. )
  215. if result is not None:
  216. results.append(result.model_dump())
  217. except Exception as e:
  218. log.exception(f"Error when querying the collection: {e}")
  219. else:
  220. pass
  221. return merge_and_sort_query_results(results, k=k)
  222. def query_collection_with_hybrid_search(
  223. collection_names: list[str],
  224. queries: list[str],
  225. embedding_function,
  226. k: int,
  227. reranking_function,
  228. k_reranker: int,
  229. r: float,
  230. ) -> dict:
  231. results = []
  232. error = False
  233. # Fetch collection data once per collection sequentially
  234. # Avoid fetching the same data multiple times later
  235. collection_results = {}
  236. for collection_name in collection_names:
  237. try:
  238. collection_results[collection_name] = VECTOR_DB_CLIENT.get(
  239. collection_name=collection_name
  240. )
  241. except Exception as e:
  242. log.exception(f"Failed to fetch collection {collection_name}: {e}")
  243. collection_results[collection_name] = None
  244. log.info(
  245. f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
  246. )
  247. def process_query(collection_name, query):
  248. try:
  249. result = query_doc_with_hybrid_search(
  250. collection_name=collection_name,
  251. collection_result=collection_results[collection_name],
  252. query=query,
  253. embedding_function=embedding_function,
  254. k=k,
  255. reranking_function=reranking_function,
  256. k_reranker=k_reranker,
  257. r=r,
  258. )
  259. return result, None
  260. except Exception as e:
  261. log.exception(f"Error when querying the collection with hybrid_search: {e}")
  262. return None, e
  263. # Prepare tasks for all collections and queries
  264. # Avoid running any tasks for collections that failed to fetch data (have assigned None)
  265. tasks = [
  266. (cn, q)
  267. for cn in collection_names
  268. if collection_results[cn] is not None
  269. for q in queries
  270. ]
  271. with ThreadPoolExecutor() as executor:
  272. future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]
  273. task_results = [future.result() for future in future_results]
  274. for result, err in task_results:
  275. if err is not None:
  276. error = True
  277. elif result is not None:
  278. results.append(result)
  279. if error and not results:
  280. raise Exception(
  281. "Hybrid search failed for all collections. Using Non-hybrid search as fallback."
  282. )
  283. return merge_and_sort_query_results(results, k=k)
  284. def get_embedding_function(
  285. embedding_engine,
  286. embedding_model,
  287. embedding_function,
  288. url,
  289. key,
  290. embedding_batch_size,
  291. ):
  292. if embedding_engine == "":
  293. return lambda query, prefix=None, user=None: embedding_function.encode(
  294. query, prompt=prefix if prefix else None
  295. ).tolist()
  296. elif embedding_engine in ["ollama", "openai"]:
  297. func = lambda query, prefix=None, user=None: generate_embeddings(
  298. engine=embedding_engine,
  299. model=embedding_model,
  300. text=query,
  301. prefix=prefix,
  302. url=url,
  303. key=key,
  304. user=user,
  305. )
  306. def generate_multiple(query, prefix, user, func):
  307. if isinstance(query, list):
  308. embeddings = []
  309. for i in range(0, len(query), embedding_batch_size):
  310. embeddings.extend(
  311. func(
  312. query[i : i + embedding_batch_size],
  313. prefix=prefix,
  314. user=user,
  315. )
  316. )
  317. return embeddings
  318. else:
  319. return func(query, prefix, user)
  320. return lambda query, prefix=None, user=None: generate_multiple(
  321. query, prefix, user, func
  322. )
  323. else:
  324. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  325. def get_sources_from_files(
  326. request,
  327. files,
  328. queries,
  329. embedding_function,
  330. k,
  331. reranking_function,
  332. k_reranker,
  333. r,
  334. hybrid_search,
  335. full_context=False,
  336. ):
  337. log.debug(
  338. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  339. )
  340. extracted_collections = []
  341. relevant_contexts = []
  342. for file in files:
  343. context = None
  344. if file.get("docs"):
  345. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  346. context = {
  347. "documents": [[doc.get("content") for doc in file.get("docs")]],
  348. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  349. }
  350. elif file.get("context") == "full":
  351. # Manual Full Mode Toggle
  352. context = {
  353. "documents": [[file.get("file").get("data", {}).get("content")]],
  354. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  355. }
  356. elif (
  357. file.get("type") != "web_search"
  358. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  359. ):
  360. # BYPASS_EMBEDDING_AND_RETRIEVAL
  361. if file.get("type") == "collection":
  362. file_ids = file.get("data", {}).get("file_ids", [])
  363. documents = []
  364. metadatas = []
  365. for file_id in file_ids:
  366. file_object = Files.get_file_by_id(file_id)
  367. if file_object:
  368. documents.append(file_object.data.get("content", ""))
  369. metadatas.append(
  370. {
  371. "file_id": file_id,
  372. "name": file_object.filename,
  373. "source": file_object.filename,
  374. }
  375. )
  376. context = {
  377. "documents": [documents],
  378. "metadatas": [metadatas],
  379. }
  380. elif file.get("id"):
  381. file_object = Files.get_file_by_id(file.get("id"))
  382. if file_object:
  383. context = {
  384. "documents": [[file_object.data.get("content", "")]],
  385. "metadatas": [
  386. [
  387. {
  388. "file_id": file.get("id"),
  389. "name": file_object.filename,
  390. "source": file_object.filename,
  391. }
  392. ]
  393. ],
  394. }
  395. elif file.get("file").get("data"):
  396. context = {
  397. "documents": [[file.get("file").get("data", {}).get("content")]],
  398. "metadatas": [
  399. [file.get("file").get("data", {}).get("metadata", {})]
  400. ],
  401. }
  402. else:
  403. collection_names = []
  404. if file.get("type") == "collection":
  405. if file.get("legacy"):
  406. collection_names = file.get("collection_names", [])
  407. else:
  408. collection_names.append(file["id"])
  409. elif file.get("collection_name"):
  410. collection_names.append(file["collection_name"])
  411. elif file.get("id"):
  412. if file.get("legacy"):
  413. collection_names.append(f"{file['id']}")
  414. else:
  415. collection_names.append(f"file-{file['id']}")
  416. collection_names = set(collection_names).difference(extracted_collections)
  417. if not collection_names:
  418. log.debug(f"skipping {file} as it has already been extracted")
  419. continue
  420. if full_context:
  421. try:
  422. context = get_all_items_from_collections(collection_names)
  423. except Exception as e:
  424. log.exception(e)
  425. else:
  426. try:
  427. context = None
  428. if file.get("type") == "text":
  429. context = file["content"]
  430. else:
  431. if hybrid_search:
  432. try:
  433. context = query_collection_with_hybrid_search(
  434. collection_names=collection_names,
  435. queries=queries,
  436. embedding_function=embedding_function,
  437. k=k,
  438. reranking_function=reranking_function,
  439. k_reranker=k_reranker,
  440. r=r,
  441. )
  442. except Exception as e:
  443. log.debug(
  444. "Error when using hybrid search, using"
  445. " non hybrid search as fallback."
  446. )
  447. if (not hybrid_search) or (context is None):
  448. context = query_collection(
  449. collection_names=collection_names,
  450. queries=queries,
  451. embedding_function=embedding_function,
  452. k=k,
  453. )
  454. except Exception as e:
  455. log.exception(e)
  456. extracted_collections.extend(collection_names)
  457. if context:
  458. if "data" in file:
  459. del file["data"]
  460. relevant_contexts.append({**context, "file": file})
  461. sources = []
  462. for context in relevant_contexts:
  463. try:
  464. if "documents" in context:
  465. if "metadatas" in context:
  466. source = {
  467. "source": context["file"],
  468. "document": context["documents"][0],
  469. "metadata": context["metadatas"][0],
  470. }
  471. if "distances" in context and context["distances"]:
  472. source["distances"] = context["distances"][0]
  473. sources.append(source)
  474. except Exception as e:
  475. log.exception(e)
  476. return sources
  477. def get_model_path(model: str, update_model: bool = False):
  478. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  479. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  480. local_files_only = not update_model
  481. if OFFLINE_MODE:
  482. local_files_only = True
  483. snapshot_kwargs = {
  484. "cache_dir": cache_dir,
  485. "local_files_only": local_files_only,
  486. }
  487. log.debug(f"model: {model}")
  488. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  489. # Inspiration from upstream sentence_transformers
  490. if (
  491. os.path.exists(model)
  492. or ("\\" in model or model.count("/") > 1)
  493. and local_files_only
  494. ):
  495. # If fully qualified path exists, return input, else set repo_id
  496. return model
  497. elif "/" not in model:
  498. # Set valid repo_id for model short-name
  499. model = "sentence-transformers" + "/" + model
  500. snapshot_kwargs["repo_id"] = model
  501. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  502. try:
  503. model_repo_path = snapshot_download(**snapshot_kwargs)
  504. log.debug(f"model_repo_path: {model_repo_path}")
  505. return model_repo_path
  506. except Exception as e:
  507. log.exception(f"Cannot determine model snapshot path: {e}")
  508. return model
  509. def generate_openai_batch_embeddings(
  510. model: str,
  511. texts: list[str],
  512. url: str = "https://api.openai.com/v1",
  513. key: str = "",
  514. prefix: str = None,
  515. user: UserModel = None,
  516. ) -> Optional[list[list[float]]]:
  517. try:
  518. json_data = {"input": texts, "model": model}
  519. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  520. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  521. r = requests.post(
  522. f"{url}/embeddings",
  523. headers={
  524. "Content-Type": "application/json",
  525. "Authorization": f"Bearer {key}",
  526. **(
  527. {
  528. "X-OpenWebUI-User-Name": user.name,
  529. "X-OpenWebUI-User-Id": user.id,
  530. "X-OpenWebUI-User-Email": user.email,
  531. "X-OpenWebUI-User-Role": user.role,
  532. }
  533. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  534. else {}
  535. ),
  536. },
  537. json=json_data,
  538. )
  539. r.raise_for_status()
  540. data = r.json()
  541. if "data" in data:
  542. return [elem["embedding"] for elem in data["data"]]
  543. else:
  544. raise "Something went wrong :/"
  545. except Exception as e:
  546. log.exception(f"Error generating openai batch embeddings: {e}")
  547. return None
  548. def generate_ollama_batch_embeddings(
  549. model: str,
  550. texts: list[str],
  551. url: str,
  552. key: str = "",
  553. prefix: str = None,
  554. user: UserModel = None,
  555. ) -> Optional[list[list[float]]]:
  556. try:
  557. json_data = {"input": texts, "model": model}
  558. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  559. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  560. r = requests.post(
  561. f"{url}/api/embed",
  562. headers={
  563. "Content-Type": "application/json",
  564. "Authorization": f"Bearer {key}",
  565. **(
  566. {
  567. "X-OpenWebUI-User-Name": user.name,
  568. "X-OpenWebUI-User-Id": user.id,
  569. "X-OpenWebUI-User-Email": user.email,
  570. "X-OpenWebUI-User-Role": user.role,
  571. }
  572. if ENABLE_FORWARD_USER_INFO_HEADERS
  573. else {}
  574. ),
  575. },
  576. json=json_data,
  577. )
  578. r.raise_for_status()
  579. data = r.json()
  580. if "embeddings" in data:
  581. return data["embeddings"]
  582. else:
  583. raise "Something went wrong :/"
  584. except Exception as e:
  585. log.exception(f"Error generating ollama batch embeddings: {e}")
  586. return None
  587. def generate_embeddings(
  588. engine: str,
  589. model: str,
  590. text: Union[str, list[str]],
  591. prefix: Union[str, None] = None,
  592. **kwargs,
  593. ):
  594. url = kwargs.get("url", "")
  595. key = kwargs.get("key", "")
  596. user = kwargs.get("user")
  597. if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
  598. if isinstance(text, list):
  599. text = [f"{prefix}{text_element}" for text_element in text]
  600. else:
  601. text = f"{prefix}{text}"
  602. if engine == "ollama":
  603. if isinstance(text, list):
  604. embeddings = generate_ollama_batch_embeddings(
  605. **{
  606. "model": model,
  607. "texts": text,
  608. "url": url,
  609. "key": key,
  610. "prefix": prefix,
  611. "user": user,
  612. }
  613. )
  614. else:
  615. embeddings = generate_ollama_batch_embeddings(
  616. **{
  617. "model": model,
  618. "texts": [text],
  619. "url": url,
  620. "key": key,
  621. "prefix": prefix,
  622. "user": user,
  623. }
  624. )
  625. return embeddings[0] if isinstance(text, str) else embeddings
  626. elif engine == "openai":
  627. if isinstance(text, list):
  628. embeddings = generate_openai_batch_embeddings(
  629. model, text, url, key, prefix, user
  630. )
  631. else:
  632. embeddings = generate_openai_batch_embeddings(
  633. model, [text], url, key, prefix, user
  634. )
  635. return embeddings[0] if isinstance(text, str) else embeddings
  636. import operator
  637. from typing import Optional, Sequence
  638. from langchain_core.callbacks import Callbacks
  639. from langchain_core.documents import BaseDocumentCompressor, Document
  640. class RerankCompressor(BaseDocumentCompressor):
  641. embedding_function: Any
  642. top_n: int
  643. reranking_function: Any
  644. r_score: float
  645. class Config:
  646. extra = "forbid"
  647. arbitrary_types_allowed = True
  648. def compress_documents(
  649. self,
  650. documents: Sequence[Document],
  651. query: str,
  652. callbacks: Optional[Callbacks] = None,
  653. ) -> Sequence[Document]:
  654. reranking = self.reranking_function is not None
  655. if reranking:
  656. scores = self.reranking_function.predict(
  657. [(query, doc.page_content) for doc in documents]
  658. )
  659. else:
  660. from sentence_transformers import util
  661. query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  662. document_embedding = self.embedding_function(
  663. [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
  664. )
  665. scores = util.cos_sim(query_embedding, document_embedding)[0]
  666. docs_with_scores = list(zip(documents, scores.tolist()))
  667. if self.r_score:
  668. docs_with_scores = [
  669. (d, s) for d, s in docs_with_scores if s >= self.r_score
  670. ]
  671. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  672. final_results = []
  673. for doc, doc_score in result[: self.top_n]:
  674. metadata = doc.metadata
  675. metadata["score"] = doc_score
  676. doc = Document(
  677. page_content=doc.page_content,
  678. metadata=metadata,
  679. )
  680. final_results.append(doc)
  681. return final_results