main.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752
  1. from fastapi import (
  2. FastAPI,
  3. Depends,
  4. HTTPException,
  5. status,
  6. UploadFile,
  7. File,
  8. Form,
  9. )
  10. from fastapi.middleware.cors import CORSMiddleware
  11. import os, shutil, logging, re
  12. from pathlib import Path
  13. from typing import List
  14. from chromadb.utils.batch_utils import create_batches
  15. from langchain_community.document_loaders import (
  16. WebBaseLoader,
  17. TextLoader,
  18. PyPDFLoader,
  19. CSVLoader,
  20. BSHTMLLoader,
  21. Docx2txtLoader,
  22. UnstructuredEPubLoader,
  23. UnstructuredWordDocumentLoader,
  24. UnstructuredMarkdownLoader,
  25. UnstructuredXMLLoader,
  26. UnstructuredRSTLoader,
  27. UnstructuredExcelLoader,
  28. )
  29. from langchain.text_splitter import RecursiveCharacterTextSplitter
  30. from pydantic import BaseModel
  31. from typing import Optional
  32. import mimetypes
  33. import uuid
  34. import json
  35. import sentence_transformers
  36. from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
  37. from apps.web.models.documents import (
  38. Documents,
  39. DocumentForm,
  40. DocumentResponse,
  41. )
  42. from apps.rag.utils import (
  43. query_embeddings_doc,
  44. query_embeddings_function,
  45. query_embeddings_collection,
  46. )
  47. from utils.misc import (
  48. calculate_sha256,
  49. calculate_sha256_string,
  50. sanitize_filename,
  51. extract_folders_after_data_docs,
  52. )
  53. from utils.utils import get_current_user, get_admin_user
  54. from config import (
  55. SRC_LOG_LEVELS,
  56. UPLOAD_DIR,
  57. DOCS_DIR,
  58. RAG_EMBEDDING_ENGINE,
  59. RAG_EMBEDDING_MODEL,
  60. RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  61. RAG_RERANKING_MODEL,
  62. RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  63. RAG_OPENAI_API_BASE_URL,
  64. RAG_OPENAI_API_KEY,
  65. DEVICE_TYPE,
  66. CHROMA_CLIENT,
  67. CHUNK_SIZE,
  68. CHUNK_OVERLAP,
  69. RAG_TEMPLATE,
  70. )
  71. from constants import ERROR_MESSAGES
  72. log = logging.getLogger(__name__)
  73. log.setLevel(SRC_LOG_LEVELS["RAG"])
  74. app = FastAPI()
  75. app.state.TOP_K = 4
  76. app.state.CHUNK_SIZE = CHUNK_SIZE
  77. app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
  78. app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
  79. app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
  80. app.state.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL
  81. app.state.RAG_TEMPLATE = RAG_TEMPLATE
  82. app.state.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
  83. app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY
  84. app.state.PDF_EXTRACT_IMAGES = False
  85. if app.state.RAG_EMBEDDING_ENGINE == "":
  86. app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer(
  87. app.state.RAG_EMBEDDING_MODEL,
  88. device=DEVICE_TYPE,
  89. trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  90. )
  91. app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
  92. app.state.RAG_RERANKING_MODEL,
  93. device=DEVICE_TYPE,
  94. trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  95. )
  96. origins = ["*"]
  97. app.add_middleware(
  98. CORSMiddleware,
  99. allow_origins=origins,
  100. allow_credentials=True,
  101. allow_methods=["*"],
  102. allow_headers=["*"],
  103. )
  104. class CollectionNameForm(BaseModel):
  105. collection_name: Optional[str] = "test"
  106. class StoreWebForm(CollectionNameForm):
  107. url: str
  108. @app.get("/")
  109. async def get_status():
  110. return {
  111. "status": True,
  112. "chunk_size": app.state.CHUNK_SIZE,
  113. "chunk_overlap": app.state.CHUNK_OVERLAP,
  114. "template": app.state.RAG_TEMPLATE,
  115. "embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
  116. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  117. "reranking_model": app.state.RAG_RERANKING_MODEL,
  118. }
  119. @app.get("/embedding")
  120. async def get_embedding_config(user=Depends(get_admin_user)):
  121. return {
  122. "status": True,
  123. "embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
  124. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  125. "openai_config": {
  126. "url": app.state.OPENAI_API_BASE_URL,
  127. "key": app.state.OPENAI_API_KEY,
  128. },
  129. }
  130. @app.get("/reranking")
  131. async def get_reraanking_config(user=Depends(get_admin_user)):
  132. return {"status": True, "reranking_model": app.state.RAG_RERANKING_MODEL}
  133. class OpenAIConfigForm(BaseModel):
  134. url: str
  135. key: str
  136. class EmbeddingModelUpdateForm(BaseModel):
  137. openai_config: Optional[OpenAIConfigForm] = None
  138. embedding_engine: str
  139. embedding_model: str
  140. @app.post("/embedding/update")
  141. async def update_embedding_config(
  142. form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
  143. ):
  144. log.info(
  145. f"Updating embedding model: {app.state.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
  146. )
  147. try:
  148. app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
  149. if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
  150. app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
  151. app.state.sentence_transformer_ef = None
  152. if form_data.openai_config != None:
  153. app.state.OPENAI_API_BASE_URL = form_data.openai_config.url
  154. app.state.OPENAI_API_KEY = form_data.openai_config.key
  155. else:
  156. sentence_transformer_ef = sentence_transformers.SentenceTransformer(
  157. app.state.RAG_EMBEDDING_MODEL,
  158. device=DEVICE_TYPE,
  159. trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  160. )
  161. app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
  162. app.state.sentence_transformer_ef = sentence_transformer_ef
  163. return {
  164. "status": True,
  165. "embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
  166. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  167. "openai_config": {
  168. "url": app.state.OPENAI_API_BASE_URL,
  169. "key": app.state.OPENAI_API_KEY,
  170. },
  171. }
  172. except Exception as e:
  173. log.exception(f"Problem updating embedding model: {e}")
  174. raise HTTPException(
  175. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  176. detail=ERROR_MESSAGES.DEFAULT(e),
  177. )
  178. class RerankingModelUpdateForm(BaseModel):
  179. reranking_model: str
  180. @app.post("/reranking/update")
  181. async def update_reranking_config(
  182. form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
  183. ):
  184. log.info(
  185. f"Updating reranking model: {app.state.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
  186. )
  187. try:
  188. app.state.RAG_RERANKING_MODEL = form_data.reranking_model
  189. app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
  190. app.state.RAG_RERANKING_MODEL,
  191. device=DEVICE_TYPE,
  192. )
  193. return {
  194. "status": True,
  195. "reranking_model": app.state.RAG_RERANKING_MODEL,
  196. }
  197. except Exception as e:
  198. log.exception(f"Problem updating reranking model: {e}")
  199. raise HTTPException(
  200. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  201. detail=ERROR_MESSAGES.DEFAULT(e),
  202. )
  203. @app.get("/config")
  204. async def get_rag_config(user=Depends(get_admin_user)):
  205. return {
  206. "status": True,
  207. "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
  208. "chunk": {
  209. "chunk_size": app.state.CHUNK_SIZE,
  210. "chunk_overlap": app.state.CHUNK_OVERLAP,
  211. },
  212. }
  213. class ChunkParamUpdateForm(BaseModel):
  214. chunk_size: int
  215. chunk_overlap: int
  216. class ConfigUpdateForm(BaseModel):
  217. pdf_extract_images: bool
  218. chunk: ChunkParamUpdateForm
  219. @app.post("/config/update")
  220. async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
  221. app.state.PDF_EXTRACT_IMAGES = form_data.pdf_extract_images
  222. app.state.CHUNK_SIZE = form_data.chunk.chunk_size
  223. app.state.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
  224. return {
  225. "status": True,
  226. "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
  227. "chunk": {
  228. "chunk_size": app.state.CHUNK_SIZE,
  229. "chunk_overlap": app.state.CHUNK_OVERLAP,
  230. },
  231. }
  232. @app.get("/template")
  233. async def get_rag_template(user=Depends(get_current_user)):
  234. return {
  235. "status": True,
  236. "template": app.state.RAG_TEMPLATE,
  237. }
  238. @app.get("/query/settings")
  239. async def get_query_settings(user=Depends(get_admin_user)):
  240. return {
  241. "status": True,
  242. "template": app.state.RAG_TEMPLATE,
  243. "k": app.state.TOP_K,
  244. }
  245. class QuerySettingsForm(BaseModel):
  246. k: Optional[int] = None
  247. template: Optional[str] = None
  248. @app.post("/query/settings/update")
  249. async def update_query_settings(
  250. form_data: QuerySettingsForm, user=Depends(get_admin_user)
  251. ):
  252. app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE
  253. app.state.TOP_K = form_data.k if form_data.k else 4
  254. return {"status": True, "template": app.state.RAG_TEMPLATE}
  255. class QueryDocForm(BaseModel):
  256. collection_name: str
  257. query: str
  258. k: Optional[int] = None
  259. @app.post("/query/doc")
  260. def query_doc_handler(
  261. form_data: QueryDocForm,
  262. user=Depends(get_current_user),
  263. ):
  264. try:
  265. embeddings_function = query_embeddings_function(
  266. app.state.RAG_EMBEDDING_ENGINE,
  267. app.state.RAG_EMBEDDING_MODEL,
  268. app.state.sentence_transformer_ef,
  269. app.state.OPENAI_API_KEY,
  270. app.state.OPENAI_API_BASE_URL,
  271. )
  272. return query_embeddings_doc(
  273. collection_name=form_data.collection_name,
  274. query=form_data.query,
  275. k=form_data.k if form_data.k else app.state.TOP_K,
  276. embeddings_function=embeddings_function,
  277. reranking_function=app.state.sentence_transformer_rf,
  278. )
  279. except Exception as e:
  280. log.exception(e)
  281. raise HTTPException(
  282. status_code=status.HTTP_400_BAD_REQUEST,
  283. detail=ERROR_MESSAGES.DEFAULT(e),
  284. )
  285. class QueryCollectionsForm(BaseModel):
  286. collection_names: List[str]
  287. query: str
  288. k: Optional[int] = None
  289. @app.post("/query/collection")
  290. def query_collection_handler(
  291. form_data: QueryCollectionsForm,
  292. user=Depends(get_current_user),
  293. ):
  294. try:
  295. embeddings_function = embeddings_function(
  296. app.state.RAG_EMBEDDING_ENGINE,
  297. app.state.RAG_EMBEDDING_MODEL,
  298. app.state.sentence_transformer_ef,
  299. app.state.OPENAI_API_KEY,
  300. app.state.OPENAI_API_BASE_URL,
  301. )
  302. return query_embeddings_collection(
  303. collection_names=form_data.collection_names,
  304. query=form_data.query,
  305. k=form_data.k if form_data.k else app.state.TOP_K,
  306. embeddings_function=embeddings_function,
  307. reranking_function=app.state.sentence_transformer_rf,
  308. )
  309. except Exception as e:
  310. log.exception(e)
  311. raise HTTPException(
  312. status_code=status.HTTP_400_BAD_REQUEST,
  313. detail=ERROR_MESSAGES.DEFAULT(e),
  314. )
  315. @app.post("/web")
  316. def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
  317. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  318. try:
  319. loader = WebBaseLoader(form_data.url)
  320. data = loader.load()
  321. collection_name = form_data.collection_name
  322. if collection_name == "":
  323. collection_name = calculate_sha256_string(form_data.url)[:63]
  324. store_data_in_vector_db(data, collection_name, overwrite=True)
  325. return {
  326. "status": True,
  327. "collection_name": collection_name,
  328. "filename": form_data.url,
  329. }
  330. except Exception as e:
  331. log.exception(e)
  332. raise HTTPException(
  333. status_code=status.HTTP_400_BAD_REQUEST,
  334. detail=ERROR_MESSAGES.DEFAULT(e),
  335. )
  336. def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool:
  337. text_splitter = RecursiveCharacterTextSplitter(
  338. chunk_size=app.state.CHUNK_SIZE,
  339. chunk_overlap=app.state.CHUNK_OVERLAP,
  340. add_start_index=True,
  341. )
  342. docs = text_splitter.split_documents(data)
  343. if len(docs) > 0:
  344. log.info(f"store_data_in_vector_db {docs}")
  345. return store_docs_in_vector_db(docs, collection_name, overwrite), None
  346. else:
  347. raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
  348. def store_text_in_vector_db(
  349. text, metadata, collection_name, overwrite: bool = False
  350. ) -> bool:
  351. text_splitter = RecursiveCharacterTextSplitter(
  352. chunk_size=app.state.CHUNK_SIZE,
  353. chunk_overlap=app.state.CHUNK_OVERLAP,
  354. add_start_index=True,
  355. )
  356. docs = text_splitter.create_documents([text], metadatas=[metadata])
  357. return store_docs_in_vector_db(docs, collection_name, overwrite)
  358. def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
  359. log.info(f"store_docs_in_vector_db {docs} {collection_name}")
  360. texts = [doc.page_content for doc in docs]
  361. metadatas = [doc.metadata for doc in docs]
  362. try:
  363. if overwrite:
  364. for collection in CHROMA_CLIENT.list_collections():
  365. if collection_name == collection.name:
  366. log.info(f"deleting existing collection {collection_name}")
  367. CHROMA_CLIENT.delete_collection(name=collection_name)
  368. collection = CHROMA_CLIENT.create_collection(name=collection_name)
  369. embedding_func = query_embeddings_function(
  370. app.state.RAG_EMBEDDING_ENGINE,
  371. app.state.RAG_EMBEDDING_MODEL,
  372. app.state.sentence_transformer_ef,
  373. app.state.OPENAI_API_KEY,
  374. app.state.OPENAI_API_BASE_URL,
  375. )
  376. embedding_texts = list(map(lambda x: x.replace("\n", " "), texts))
  377. if app.state.RAG_EMBEDDING_ENGINE == "":
  378. embeddings = embedding_func(embedding_texts)
  379. else:
  380. embeddings = [
  381. embedding_func(embedding_texts) for text in texts
  382. ]
  383. for batch in create_batches(
  384. api=CHROMA_CLIENT,
  385. ids=[str(uuid.uuid1()) for _ in texts],
  386. metadatas=metadatas,
  387. embeddings=embeddings,
  388. documents=texts,
  389. ):
  390. collection.add(*batch)
  391. return True
  392. except Exception as e:
  393. log.exception(e)
  394. if e.__class__.__name__ == "UniqueConstraintError":
  395. return True
  396. return False
  397. def get_loader(filename: str, file_content_type: str, file_path: str):
  398. file_ext = filename.split(".")[-1].lower()
  399. known_type = True
  400. known_source_ext = [
  401. "go",
  402. "py",
  403. "java",
  404. "sh",
  405. "bat",
  406. "ps1",
  407. "cmd",
  408. "js",
  409. "ts",
  410. "css",
  411. "cpp",
  412. "hpp",
  413. "h",
  414. "c",
  415. "cs",
  416. "sql",
  417. "log",
  418. "ini",
  419. "pl",
  420. "pm",
  421. "r",
  422. "dart",
  423. "dockerfile",
  424. "env",
  425. "php",
  426. "hs",
  427. "hsc",
  428. "lua",
  429. "nginxconf",
  430. "conf",
  431. "m",
  432. "mm",
  433. "plsql",
  434. "perl",
  435. "rb",
  436. "rs",
  437. "db2",
  438. "scala",
  439. "bash",
  440. "swift",
  441. "vue",
  442. "svelte",
  443. ]
  444. if file_ext == "pdf":
  445. loader = PyPDFLoader(file_path, extract_images=app.state.PDF_EXTRACT_IMAGES)
  446. elif file_ext == "csv":
  447. loader = CSVLoader(file_path)
  448. elif file_ext == "rst":
  449. loader = UnstructuredRSTLoader(file_path, mode="elements")
  450. elif file_ext == "xml":
  451. loader = UnstructuredXMLLoader(file_path)
  452. elif file_ext in ["htm", "html"]:
  453. loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
  454. elif file_ext == "md":
  455. loader = UnstructuredMarkdownLoader(file_path)
  456. elif file_content_type == "application/epub+zip":
  457. loader = UnstructuredEPubLoader(file_path)
  458. elif (
  459. file_content_type
  460. == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
  461. or file_ext in ["doc", "docx"]
  462. ):
  463. loader = Docx2txtLoader(file_path)
  464. elif file_content_type in [
  465. "application/vnd.ms-excel",
  466. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  467. ] or file_ext in ["xls", "xlsx"]:
  468. loader = UnstructuredExcelLoader(file_path)
  469. elif file_ext in known_source_ext or (
  470. file_content_type and file_content_type.find("text/") >= 0
  471. ):
  472. loader = TextLoader(file_path, autodetect_encoding=True)
  473. else:
  474. loader = TextLoader(file_path, autodetect_encoding=True)
  475. known_type = False
  476. return loader, known_type
  477. @app.post("/doc")
  478. def store_doc(
  479. collection_name: Optional[str] = Form(None),
  480. file: UploadFile = File(...),
  481. user=Depends(get_current_user),
  482. ):
  483. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  484. log.info(f"file.content_type: {file.content_type}")
  485. try:
  486. unsanitized_filename = file.filename
  487. filename = os.path.basename(unsanitized_filename)
  488. file_path = f"{UPLOAD_DIR}/{filename}"
  489. contents = file.file.read()
  490. with open(file_path, "wb") as f:
  491. f.write(contents)
  492. f.close()
  493. f = open(file_path, "rb")
  494. if collection_name == None:
  495. collection_name = calculate_sha256(f)[:63]
  496. f.close()
  497. loader, known_type = get_loader(filename, file.content_type, file_path)
  498. data = loader.load()
  499. try:
  500. result = store_data_in_vector_db(data, collection_name)
  501. if result:
  502. return {
  503. "status": True,
  504. "collection_name": collection_name,
  505. "filename": filename,
  506. "known_type": known_type,
  507. }
  508. except Exception as e:
  509. raise HTTPException(
  510. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  511. detail=e,
  512. )
  513. except Exception as e:
  514. log.exception(e)
  515. if "No pandoc was found" in str(e):
  516. raise HTTPException(
  517. status_code=status.HTTP_400_BAD_REQUEST,
  518. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  519. )
  520. else:
  521. raise HTTPException(
  522. status_code=status.HTTP_400_BAD_REQUEST,
  523. detail=ERROR_MESSAGES.DEFAULT(e),
  524. )
  525. class TextRAGForm(BaseModel):
  526. name: str
  527. content: str
  528. collection_name: Optional[str] = None
  529. @app.post("/text")
  530. def store_text(
  531. form_data: TextRAGForm,
  532. user=Depends(get_current_user),
  533. ):
  534. collection_name = form_data.collection_name
  535. if collection_name == None:
  536. collection_name = calculate_sha256_string(form_data.content)
  537. result = store_text_in_vector_db(
  538. form_data.content,
  539. metadata={"name": form_data.name, "created_by": user.id},
  540. collection_name=collection_name,
  541. )
  542. if result:
  543. return {"status": True, "collection_name": collection_name}
  544. else:
  545. raise HTTPException(
  546. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  547. detail=ERROR_MESSAGES.DEFAULT(),
  548. )
  549. @app.get("/scan")
  550. def scan_docs_dir(user=Depends(get_admin_user)):
  551. for path in Path(DOCS_DIR).rglob("./**/*"):
  552. try:
  553. if path.is_file() and not path.name.startswith("."):
  554. tags = extract_folders_after_data_docs(path)
  555. filename = path.name
  556. file_content_type = mimetypes.guess_type(path)
  557. f = open(path, "rb")
  558. collection_name = calculate_sha256(f)[:63]
  559. f.close()
  560. loader, known_type = get_loader(
  561. filename, file_content_type[0], str(path)
  562. )
  563. data = loader.load()
  564. try:
  565. result = store_data_in_vector_db(data, collection_name)
  566. if result:
  567. sanitized_filename = sanitize_filename(filename)
  568. doc = Documents.get_doc_by_name(sanitized_filename)
  569. if doc == None:
  570. doc = Documents.insert_new_doc(
  571. user.id,
  572. DocumentForm(
  573. **{
  574. "name": sanitized_filename,
  575. "title": filename,
  576. "collection_name": collection_name,
  577. "filename": filename,
  578. "content": (
  579. json.dumps(
  580. {
  581. "tags": list(
  582. map(
  583. lambda name: {"name": name},
  584. tags,
  585. )
  586. )
  587. }
  588. )
  589. if len(tags)
  590. else "{}"
  591. ),
  592. }
  593. ),
  594. )
  595. except Exception as e:
  596. log.exception(e)
  597. pass
  598. except Exception as e:
  599. log.exception(e)
  600. return True
  601. @app.get("/reset/db")
  602. def reset_vector_db(user=Depends(get_admin_user)):
  603. CHROMA_CLIENT.reset()
  604. @app.get("/reset")
  605. def reset(user=Depends(get_admin_user)) -> bool:
  606. folder = f"{UPLOAD_DIR}"
  607. for filename in os.listdir(folder):
  608. file_path = os.path.join(folder, filename)
  609. try:
  610. if os.path.isfile(file_path) or os.path.islink(file_path):
  611. os.unlink(file_path)
  612. elif os.path.isdir(file_path):
  613. shutil.rmtree(file_path)
  614. except Exception as e:
  615. log.error("Failed to delete %s. Reason: %s" % (file_path, e))
  616. try:
  617. CHROMA_CLIENT.reset()
  618. except Exception as e:
  619. log.exception(e)
  620. return True