utils.py 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. import logging
  2. import requests
  3. import operator
  4. import sentence_transformers
  5. from typing import List
  6. from apps.ollama.main import (
  7. generate_ollama_embeddings,
  8. GenerateEmbeddingsForm,
  9. )
  10. from langchain.retrievers import (
  11. BM25Retriever,
  12. EnsembleRetriever,
  13. )
  14. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  15. log = logging.getLogger(__name__)
  16. log.setLevel(SRC_LOG_LEVELS["RAG"])
  17. def query_embeddings_doc(
  18. collection_name: str,
  19. query: str,
  20. k: int,
  21. embeddings_function,
  22. reranking_function,
  23. ):
  24. try:
  25. # if you use docker use the model from the environment variable
  26. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  27. # keyword search
  28. documents = collection.get() # get all documents
  29. bm25_retriever = BM25Retriever.from_texts(
  30. texts=documents.get("documents"),
  31. metadatas=documents.get("metadatas"),
  32. )
  33. bm25_retriever.k = k
  34. # semantic search (vector)
  35. chroma_retriever = ChromaRetriever(
  36. collection=collection,
  37. k=k,
  38. embeddings_function=embeddings_function,
  39. )
  40. # hybrid search (ensemble)
  41. ensemble_retriever = EnsembleRetriever(
  42. retrievers=[bm25_retriever, chroma_retriever],
  43. weights=[0.6, 0.4]
  44. )
  45. documents = ensemble_retriever.invoke(query)
  46. result = query_results_rank(
  47. query=query,
  48. documents=documents,
  49. k=k,
  50. reranking_function=reranking_function,
  51. )
  52. result = {
  53. "distances": [[d[1].item() for d in result]],
  54. "documents": [[d[0].page_content for d in result]],
  55. "metadatas": [[d[0].metadata for d in result]],
  56. }
  57. return result
  58. except Exception as e:
  59. raise e
  60. def query_results_rank(query: str, documents, k: int, reranking_function):
  61. scores = reranking_function.predict([(query, doc.page_content) for doc in documents])
  62. docs_with_scores = list(zip(documents, scores))
  63. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  64. return result[: k]
  65. def merge_and_sort_query_results(query_results, k):
  66. # Initialize lists to store combined data
  67. combined_distances = []
  68. combined_documents = []
  69. combined_metadatas = []
  70. # Combine data from each dictionary
  71. for data in query_results:
  72. combined_distances.extend(data["distances"][0])
  73. combined_documents.extend(data["documents"][0])
  74. combined_metadatas.extend(data["metadatas"][0])
  75. # Create a list of tuples (distance, document, metadata)
  76. combined = list(
  77. zip(combined_distances, combined_documents, combined_metadatas)
  78. )
  79. # Sort the list based on distances
  80. combined.sort(key=lambda x: x[0])
  81. # Unzip the sorted list
  82. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  83. # Slicing the lists to include only k elements
  84. sorted_distances = list(sorted_distances)[:k]
  85. sorted_documents = list(sorted_documents)[:k]
  86. sorted_metadatas = list(sorted_metadatas)[:k]
  87. # Create the output dictionary
  88. merged_query_results = {
  89. "distances": [sorted_distances],
  90. "documents": [sorted_documents],
  91. "metadatas": [sorted_metadatas],
  92. "embeddings": None,
  93. "uris": None,
  94. "data": None,
  95. }
  96. return merged_query_results
  97. def query_embeddings_collection(
  98. collection_names: List[str],
  99. query: str,
  100. k: int,
  101. embeddings_function,
  102. reranking_function,
  103. ):
  104. results = []
  105. for collection_name in collection_names:
  106. try:
  107. result = query_embeddings_doc(
  108. collection_name=collection_name,
  109. query=query,
  110. k=k,
  111. embeddings_function=embeddings_function,
  112. reranking_function=reranking_function,
  113. )
  114. results.append(result)
  115. except:
  116. pass
  117. return merge_and_sort_query_results(results, k)
  118. def rag_template(template: str, context: str, query: str):
  119. template = template.replace("[context]", context)
  120. template = template.replace("[query]", query)
  121. return template
  122. def query_embeddings_function(
  123. embedding_engine,
  124. embedding_model,
  125. embedding_function,
  126. openai_key,
  127. openai_url,
  128. ):
  129. if embedding_engine == "":
  130. return lambda query: embedding_function.encode(query).tolist()
  131. elif embedding_engine == "ollama":
  132. return lambda query: generate_ollama_embeddings(
  133. GenerateEmbeddingsForm(
  134. **{
  135. "model": embedding_model,
  136. "prompt": query,
  137. }
  138. )
  139. )
  140. elif embedding_engine == "openai":
  141. return lambda query: generate_openai_embeddings(
  142. model=embedding_model,
  143. text=query,
  144. key=openai_key,
  145. url=openai_url,
  146. )
  147. def rag_messages(
  148. docs,
  149. messages,
  150. template,
  151. k,
  152. embedding_engine,
  153. embedding_model,
  154. embedding_function,
  155. reranking_function,
  156. openai_key,
  157. openai_url,
  158. ):
  159. log.debug(
  160. f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
  161. )
  162. last_user_message_idx = None
  163. for i in range(len(messages) - 1, -1, -1):
  164. if messages[i]["role"] == "user":
  165. last_user_message_idx = i
  166. break
  167. user_message = messages[last_user_message_idx]
  168. if isinstance(user_message["content"], list):
  169. # Handle list content input
  170. content_type = "list"
  171. query = ""
  172. for content_item in user_message["content"]:
  173. if content_item["type"] == "text":
  174. query = content_item["text"]
  175. break
  176. elif isinstance(user_message["content"], str):
  177. # Handle text content input
  178. content_type = "text"
  179. query = user_message["content"]
  180. else:
  181. # Fallback in case the input does not match expected types
  182. content_type = None
  183. query = ""
  184. relevant_contexts = []
  185. for doc in docs:
  186. context = None
  187. try:
  188. if doc["type"] == "text":
  189. context = doc["content"]
  190. else:
  191. embeddings_function = query_embeddings_function(
  192. embedding_engine,
  193. embedding_model,
  194. embedding_function,
  195. openai_key,
  196. openai_url,
  197. )
  198. if doc["type"] == "collection":
  199. context = query_embeddings_collection(
  200. collection_names=doc["collection_names"],
  201. query=query,
  202. k=k,
  203. embeddings_function=embeddings_function,
  204. reranking_function=reranking_function,
  205. )
  206. else:
  207. context = query_embeddings_doc(
  208. collection_name=doc["collection_name"],
  209. query=query,
  210. k=k,
  211. embeddings_function=embeddings_function,
  212. reranking_function=reranking_function,
  213. )
  214. except Exception as e:
  215. log.exception(e)
  216. context = None
  217. relevant_contexts.append(context)
  218. log.debug(f"relevant_contexts: {relevant_contexts}")
  219. context_string = ""
  220. for context in relevant_contexts:
  221. if context:
  222. context_string += " ".join(context["documents"][0]) + "\n"
  223. ra_content = rag_template(
  224. template=template,
  225. context=context_string,
  226. query=query,
  227. )
  228. if content_type == "list":
  229. new_content = []
  230. for content_item in user_message["content"]:
  231. if content_item["type"] == "text":
  232. # Update the text item's content with ra_content
  233. new_content.append({"type": "text", "text": ra_content})
  234. else:
  235. # Keep other types of content as they are
  236. new_content.append(content_item)
  237. new_user_message = {**user_message, "content": new_content}
  238. else:
  239. new_user_message = {
  240. **user_message,
  241. "content": ra_content,
  242. }
  243. messages[last_user_message_idx] = new_user_message
  244. return messages
  245. def generate_openai_embeddings(
  246. model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
  247. ):
  248. try:
  249. r = requests.post(
  250. f"{url}/embeddings",
  251. headers={
  252. "Content-Type": "application/json",
  253. "Authorization": f"Bearer {key}",
  254. },
  255. json={"input": text, "model": model},
  256. )
  257. r.raise_for_status()
  258. data = r.json()
  259. if "data" in data:
  260. return data["data"][0]["embedding"]
  261. else:
  262. raise "Something went wrong :/"
  263. except Exception as e:
  264. print(e)
  265. return None
  266. from typing import Any
  267. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  268. from langchain_core.documents import Document
  269. from langchain_core.retrievers import BaseRetriever
  270. class ChromaRetriever(BaseRetriever):
  271. collection: Any
  272. k: int
  273. embeddings_function: Any
  274. def _get_relevant_documents(
  275. self,
  276. query: str,
  277. *,
  278. run_manager: CallbackManagerForRetrieverRun,
  279. ) -> List[Document]:
  280. query_embeddings = self.embeddings_function(query)
  281. results = self.collection.query(
  282. query_embeddings=[query_embeddings],
  283. n_results=self.k,
  284. )
  285. ids = results["ids"][0]
  286. metadatas = results["metadatas"][0]
  287. documents = results["documents"][0]
  288. return [
  289. Document(
  290. metadata=metadatas[idx],
  291. page_content=documents[idx],
  292. )
  293. for idx in range(len(ids))
  294. ]