123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119 |
- import hashlib
- import json
- import logging
- import os
- import uuid
- from functools import lru_cache
- from pathlib import Path
- from pydub import AudioSegment
- from pydub.silence import split_on_silence
- from concurrent.futures import ThreadPoolExecutor
- from typing import Optional
- import aiohttp
- import aiofiles
- import requests
- import mimetypes
- from fastapi import (
- Depends,
- FastAPI,
- File,
- Form,
- HTTPException,
- Request,
- UploadFile,
- status,
- APIRouter,
- )
- from fastapi.middleware.cors import CORSMiddleware
- from fastapi.responses import FileResponse
- from pydantic import BaseModel
- from open_webui.utils.auth import get_admin_user, get_verified_user
- from open_webui.config import (
- WHISPER_MODEL_AUTO_UPDATE,
- WHISPER_MODEL_DIR,
- CACHE_DIR,
- WHISPER_LANGUAGE,
- )
- from open_webui.constants import ERROR_MESSAGES
- from open_webui.env import (
- AIOHTTP_CLIENT_SESSION_SSL,
- AIOHTTP_CLIENT_TIMEOUT,
- ENV,
- SRC_LOG_LEVELS,
- DEVICE_TYPE,
- ENABLE_FORWARD_USER_INFO_HEADERS,
- )
- router = APIRouter()
- # Constants
- MAX_FILE_SIZE_MB = 20
- MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
- AZURE_MAX_FILE_SIZE_MB = 200
- AZURE_MAX_FILE_SIZE = AZURE_MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
- log = logging.getLogger(__name__)
- log.setLevel(SRC_LOG_LEVELS["AUDIO"])
- SPEECH_CACHE_DIR = CACHE_DIR / "audio" / "speech"
- SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)
- ##########################################
- #
- # Utility functions
- #
- ##########################################
- from pydub import AudioSegment
- from pydub.utils import mediainfo
- def is_audio_conversion_required(file_path):
- """
- Check if the given audio file needs conversion to mp3.
- """
- SUPPORTED_FORMATS = {"flac", "m4a", "mp3", "mp4", "mpeg", "wav", "webm"}
- if not os.path.isfile(file_path):
- log.error(f"File not found: {file_path}")
- return False
- try:
- info = mediainfo(file_path)
- codec_name = info.get("codec_name", "").lower()
- codec_type = info.get("codec_type", "").lower()
- codec_tag_string = info.get("codec_tag_string", "").lower()
- if codec_name == "aac" and codec_type == "audio" and codec_tag_string == "mp4a":
- # File is AAC/mp4a audio, recommend mp3 conversion
- return True
- # If the codec name is in the supported formats
- if codec_name in SUPPORTED_FORMATS:
- return False
- return True
- except Exception as e:
- log.error(f"Error getting audio format: {e}")
- return False
- def convert_audio_to_mp3(file_path):
- """Convert audio file to mp3 format."""
- try:
- output_path = os.path.splitext(file_path)[0] + ".mp3"
- audio = AudioSegment.from_file(file_path)
- audio.export(output_path, format="mp3")
- log.info(f"Converted {file_path} to {output_path}")
- return output_path
- except Exception as e:
- log.error(f"Error converting audio file: {e}")
- return None
- def set_faster_whisper_model(model: str, auto_update: bool = False):
- whisper_model = None
- if model:
- from faster_whisper import WhisperModel
- faster_whisper_kwargs = {
- "model_size_or_path": model,
- "device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu",
- "compute_type": "int8",
- "download_root": WHISPER_MODEL_DIR,
- "local_files_only": not auto_update,
- }
- try:
- whisper_model = WhisperModel(**faster_whisper_kwargs)
- except Exception:
- log.warning(
- "WhisperModel initialization failed, attempting download with local_files_only=False"
- )
- faster_whisper_kwargs["local_files_only"] = False
- whisper_model = WhisperModel(**faster_whisper_kwargs)
- return whisper_model
- ##########################################
- #
- # Audio API
- #
- ##########################################
- class TTSConfigForm(BaseModel):
- OPENAI_API_BASE_URL: str
- OPENAI_API_KEY: str
- API_KEY: str
- ENGINE: str
- MODEL: str
- VOICE: str
- SPLIT_ON: str
- AZURE_SPEECH_REGION: str
- AZURE_SPEECH_BASE_URL: str
- AZURE_SPEECH_OUTPUT_FORMAT: str
- class STTConfigForm(BaseModel):
- OPENAI_API_BASE_URL: str
- OPENAI_API_KEY: str
- ENGINE: str
- MODEL: str
- WHISPER_MODEL: str
- DEEPGRAM_API_KEY: str
- AZURE_API_KEY: str
- AZURE_REGION: str
- AZURE_LOCALES: str
- AZURE_BASE_URL: str
- AZURE_MAX_SPEAKERS: str
- class AudioConfigUpdateForm(BaseModel):
- tts: TTSConfigForm
- stt: STTConfigForm
- @router.get("/config")
- async def get_audio_config(request: Request, user=Depends(get_admin_user)):
- return {
- "tts": {
- "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
- "API_KEY": request.app.state.config.TTS_API_KEY,
- "ENGINE": request.app.state.config.TTS_ENGINE,
- "MODEL": request.app.state.config.TTS_MODEL,
- "VOICE": request.app.state.config.TTS_VOICE,
- "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
- "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
- "AZURE_SPEECH_BASE_URL": request.app.state.config.TTS_AZURE_SPEECH_BASE_URL,
- "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
- },
- "stt": {
- "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
- "ENGINE": request.app.state.config.STT_ENGINE,
- "MODEL": request.app.state.config.STT_MODEL,
- "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
- "DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
- "AZURE_API_KEY": request.app.state.config.AUDIO_STT_AZURE_API_KEY,
- "AZURE_REGION": request.app.state.config.AUDIO_STT_AZURE_REGION,
- "AZURE_LOCALES": request.app.state.config.AUDIO_STT_AZURE_LOCALES,
- "AZURE_BASE_URL": request.app.state.config.AUDIO_STT_AZURE_BASE_URL,
- "AZURE_MAX_SPEAKERS": request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS,
- },
- }
- @router.post("/config/update")
- async def update_audio_config(
- request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user)
- ):
- request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL
- request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY
- request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY
- request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE
- request.app.state.config.TTS_MODEL = form_data.tts.MODEL
- request.app.state.config.TTS_VOICE = form_data.tts.VOICE
- request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON
- request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION
- request.app.state.config.TTS_AZURE_SPEECH_BASE_URL = (
- form_data.tts.AZURE_SPEECH_BASE_URL
- )
- request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = (
- form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT
- )
- request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL
- request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY
- request.app.state.config.STT_ENGINE = form_data.stt.ENGINE
- request.app.state.config.STT_MODEL = form_data.stt.MODEL
- request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL
- request.app.state.config.DEEPGRAM_API_KEY = form_data.stt.DEEPGRAM_API_KEY
- request.app.state.config.AUDIO_STT_AZURE_API_KEY = form_data.stt.AZURE_API_KEY
- request.app.state.config.AUDIO_STT_AZURE_REGION = form_data.stt.AZURE_REGION
- request.app.state.config.AUDIO_STT_AZURE_LOCALES = form_data.stt.AZURE_LOCALES
- request.app.state.config.AUDIO_STT_AZURE_BASE_URL = form_data.stt.AZURE_BASE_URL
- request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS = (
- form_data.stt.AZURE_MAX_SPEAKERS
- )
- if request.app.state.config.STT_ENGINE == "":
- request.app.state.faster_whisper_model = set_faster_whisper_model(
- form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE
- )
- return {
- "tts": {
- "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
- "API_KEY": request.app.state.config.TTS_API_KEY,
- "ENGINE": request.app.state.config.TTS_ENGINE,
- "MODEL": request.app.state.config.TTS_MODEL,
- "VOICE": request.app.state.config.TTS_VOICE,
- "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
- "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
- "AZURE_SPEECH_BASE_URL": request.app.state.config.TTS_AZURE_SPEECH_BASE_URL,
- "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
- },
- "stt": {
- "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
- "ENGINE": request.app.state.config.STT_ENGINE,
- "MODEL": request.app.state.config.STT_MODEL,
- "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
- "DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
- "AZURE_API_KEY": request.app.state.config.AUDIO_STT_AZURE_API_KEY,
- "AZURE_REGION": request.app.state.config.AUDIO_STT_AZURE_REGION,
- "AZURE_LOCALES": request.app.state.config.AUDIO_STT_AZURE_LOCALES,
- "AZURE_BASE_URL": request.app.state.config.AUDIO_STT_AZURE_BASE_URL,
- "AZURE_MAX_SPEAKERS": request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS,
- },
- }
- def load_speech_pipeline(request):
- from transformers import pipeline
- from datasets import load_dataset
- if request.app.state.speech_synthesiser is None:
- request.app.state.speech_synthesiser = pipeline(
- "text-to-speech", "microsoft/speecht5_tts"
- )
- if request.app.state.speech_speaker_embeddings_dataset is None:
- request.app.state.speech_speaker_embeddings_dataset = load_dataset(
- "Matthijs/cmu-arctic-xvectors", split="validation"
- )
- @router.post("/speech")
- async def speech(request: Request, user=Depends(get_verified_user)):
- body = await request.body()
- name = hashlib.sha256(
- body
- + str(request.app.state.config.TTS_ENGINE).encode("utf-8")
- + str(request.app.state.config.TTS_MODEL).encode("utf-8")
- ).hexdigest()
- file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
- file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")
- # Check if the file already exists in the cache
- if file_path.is_file():
- return FileResponse(file_path)
- payload = None
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- if request.app.state.config.TTS_ENGINE == "openai":
- payload["model"] = request.app.state.config.TTS_MODEL
- try:
- timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
- async with aiohttp.ClientSession(
- timeout=timeout, trust_env=True
- ) as session:
- async with session.post(
- url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech",
- json=payload,
- headers={
- "Content-Type": "application/json",
- "Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}",
- **(
- {
- "X-OpenWebUI-User-Name": user.name,
- "X-OpenWebUI-User-Id": user.id,
- "X-OpenWebUI-User-Email": user.email,
- "X-OpenWebUI-User-Role": user.role,
- }
- if ENABLE_FORWARD_USER_INFO_HEADERS
- else {}
- ),
- },
- ssl=AIOHTTP_CLIENT_SESSION_SSL,
- ) as r:
- r.raise_for_status()
- async with aiofiles.open(file_path, "wb") as f:
- await f.write(await r.read())
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- detail = None
- try:
- if r.status != 200:
- res = await r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- elif request.app.state.config.TTS_ENGINE == "elevenlabs":
- voice_id = payload.get("voice", "")
- if voice_id not in get_available_voices(request):
- raise HTTPException(
- status_code=400,
- detail="Invalid voice id",
- )
- try:
- timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
- async with aiohttp.ClientSession(
- timeout=timeout, trust_env=True
- ) as session:
- async with session.post(
- f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
- json={
- "text": payload["input"],
- "model_id": request.app.state.config.TTS_MODEL,
- "voice_settings": {"stability": 0.5, "similarity_boost": 0.5},
- },
- headers={
- "Accept": "audio/mpeg",
- "Content-Type": "application/json",
- "xi-api-key": request.app.state.config.TTS_API_KEY,
- },
- ssl=AIOHTTP_CLIENT_SESSION_SSL,
- ) as r:
- r.raise_for_status()
- async with aiofiles.open(file_path, "wb") as f:
- await f.write(await r.read())
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- detail = None
- try:
- if r.status != 200:
- res = await r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- elif request.app.state.config.TTS_ENGINE == "azure":
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- region = request.app.state.config.TTS_AZURE_SPEECH_REGION or "eastus"
- base_url = request.app.state.config.TTS_AZURE_SPEECH_BASE_URL
- language = request.app.state.config.TTS_VOICE
- locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1])
- output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT
- try:
- data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}">
- <voice name="{language}">{payload["input"]}</voice>
- </speak>"""
- timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
- async with aiohttp.ClientSession(
- timeout=timeout, trust_env=True
- ) as session:
- async with session.post(
- (base_url or f"https://{region}.tts.speech.microsoft.com")
- + "/cognitiveservices/v1",
- headers={
- "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY,
- "Content-Type": "application/ssml+xml",
- "X-Microsoft-OutputFormat": output_format,
- },
- data=data,
- ssl=AIOHTTP_CLIENT_SESSION_SSL,
- ) as r:
- r.raise_for_status()
- async with aiofiles.open(file_path, "wb") as f:
- await f.write(await r.read())
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- detail = None
- try:
- if r.status != 200:
- res = await r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- elif request.app.state.config.TTS_ENGINE == "transformers":
- payload = None
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- import torch
- import soundfile as sf
- load_speech_pipeline(request)
- embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset
- speaker_index = 6799
- try:
- speaker_index = embeddings_dataset["filename"].index(
- request.app.state.config.TTS_MODEL
- )
- except Exception:
- pass
- speaker_embedding = torch.tensor(
- embeddings_dataset[speaker_index]["xvector"]
- ).unsqueeze(0)
- speech = request.app.state.speech_synthesiser(
- payload["input"],
- forward_params={"speaker_embeddings": speaker_embedding},
- )
- sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"])
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- def transcription_handler(request, file_path, metadata):
- filename = os.path.basename(file_path)
- file_dir = os.path.dirname(file_path)
- id = filename.split(".")[0]
- metadata = metadata or {}
- if request.app.state.config.STT_ENGINE == "":
- if request.app.state.faster_whisper_model is None:
- request.app.state.faster_whisper_model = set_faster_whisper_model(
- request.app.state.config.WHISPER_MODEL
- )
- model = request.app.state.faster_whisper_model
- segments, info = model.transcribe(
- file_path,
- beam_size=5,
- vad_filter=request.app.state.config.WHISPER_VAD_FILTER,
- language=metadata.get("language") or WHISPER_LANGUAGE,
- )
- log.info(
- "Detected language '%s' with probability %f"
- % (info.language, info.language_probability)
- )
- transcript = "".join([segment.text for segment in list(segments)])
- data = {"text": transcript.strip()}
- # save the transcript to a json file
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- log.debug(data)
- return data
- elif request.app.state.config.STT_ENGINE == "openai":
- r = None
- try:
- r = requests.post(
- url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
- headers={
- "Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}"
- },
- files={"file": (filename, open(file_path, "rb"))},
- data={
- "model": request.app.state.config.STT_MODEL,
- **(
- {"language": metadata.get("language")}
- if metadata.get("language")
- else {}
- ),
- },
- )
- r.raise_for_status()
- data = r.json()
- # save the transcript to a json file
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- return data
- except Exception as e:
- log.exception(e)
- detail = None
- if r is not None:
- try:
- res = r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise Exception(detail if detail else "Open WebUI: Server Connection Error")
- elif request.app.state.config.STT_ENGINE == "deepgram":
- try:
- # Determine the MIME type of the file
- mime, _ = mimetypes.guess_type(file_path)
- if not mime:
- mime = "audio/wav" # fallback to wav if undetectable
- # Read the audio file
- with open(file_path, "rb") as f:
- file_data = f.read()
- # Build headers and parameters
- headers = {
- "Authorization": f"Token {request.app.state.config.DEEPGRAM_API_KEY}",
- "Content-Type": mime,
- }
- # Add model if specified
- params = {}
- if request.app.state.config.STT_MODEL:
- params["model"] = request.app.state.config.STT_MODEL
- # Make request to Deepgram API
- r = requests.post(
- "https://api.deepgram.com/v1/listen",
- headers=headers,
- params=params,
- data=file_data,
- )
- r.raise_for_status()
- response_data = r.json()
- # Extract transcript from Deepgram response
- try:
- transcript = response_data["results"]["channels"][0]["alternatives"][
- 0
- ].get("transcript", "")
- except (KeyError, IndexError) as e:
- log.error(f"Malformed response from Deepgram: {str(e)}")
- raise Exception(
- "Failed to parse Deepgram response - unexpected response format"
- )
- data = {"text": transcript.strip()}
- # Save transcript
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- return data
- except Exception as e:
- log.exception(e)
- detail = None
- if r is not None:
- try:
- res = r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise Exception(detail if detail else "Open WebUI: Server Connection Error")
- elif request.app.state.config.STT_ENGINE == "azure":
- # Check file exists and size
- if not os.path.exists(file_path):
- raise HTTPException(status_code=400, detail="Audio file not found")
- # Check file size (Azure has a larger limit of 200MB)
- file_size = os.path.getsize(file_path)
- if file_size > AZURE_MAX_FILE_SIZE:
- raise HTTPException(
- status_code=400,
- detail=f"File size exceeds Azure's limit of {AZURE_MAX_FILE_SIZE_MB}MB",
- )
- api_key = request.app.state.config.AUDIO_STT_AZURE_API_KEY
- region = request.app.state.config.AUDIO_STT_AZURE_REGION or "eastus"
- locales = request.app.state.config.AUDIO_STT_AZURE_LOCALES
- base_url = request.app.state.config.AUDIO_STT_AZURE_BASE_URL
- max_speakers = request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS or 3
- # IF NO LOCALES, USE DEFAULTS
- if len(locales) < 2:
- locales = [
- "en-US",
- "es-ES",
- "es-MX",
- "fr-FR",
- "hi-IN",
- "it-IT",
- "de-DE",
- "en-GB",
- "en-IN",
- "ja-JP",
- "ko-KR",
- "pt-BR",
- "zh-CN",
- ]
- locales = ",".join(locales)
- if not api_key or not region:
- raise HTTPException(
- status_code=400,
- detail="Azure API key is required for Azure STT",
- )
- r = None
- try:
- # Prepare the request
- data = {
- "definition": json.dumps(
- {
- "locales": locales.split(","),
- "diarization": {"maxSpeakers": max_speakers, "enabled": True},
- }
- if locales
- else {}
- )
- }
- url = (
- base_url or f"https://{region}.api.cognitive.microsoft.com"
- ) + "/speechtotext/transcriptions:transcribe?api-version=2024-11-15"
- # Use context manager to ensure file is properly closed
- with open(file_path, "rb") as audio_file:
- r = requests.post(
- url=url,
- files={"audio": audio_file},
- data=data,
- headers={
- "Ocp-Apim-Subscription-Key": api_key,
- },
- )
- r.raise_for_status()
- response = r.json()
- # Extract transcript from response
- if not response.get("combinedPhrases"):
- raise ValueError("No transcription found in response")
- # Get the full transcript from combinedPhrases
- transcript = response["combinedPhrases"][0].get("text", "").strip()
- if not transcript:
- raise ValueError("Empty transcript in response")
- data = {"text": transcript}
- # Save transcript to json file (consistent with other providers)
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- log.debug(data)
- return data
- except (KeyError, IndexError, ValueError) as e:
- log.exception("Error parsing Azure response")
- raise HTTPException(
- status_code=500,
- detail=f"Failed to parse Azure response: {str(e)}",
- )
- except requests.exceptions.RequestException as e:
- log.exception(e)
- detail = None
- try:
- if r is not None and r.status_code != 200:
- res = r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status_code", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- def transcribe(request: Request, file_path: str, metadata: Optional[dict] = None):
- log.info(f"transcribe: {file_path} {metadata}")
- if is_audio_conversion_required(file_path):
- file_path = convert_audio_to_mp3(file_path)
- try:
- file_path = compress_audio(file_path)
- except Exception as e:
- log.exception(e)
- # Always produce a list of chunk paths (could be one entry if small)
- try:
- chunk_paths = split_audio(file_path, MAX_FILE_SIZE)
- print(f"Chunk paths: {chunk_paths}")
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- results = []
- try:
- with ThreadPoolExecutor() as executor:
- # Submit tasks for each chunk_path
- futures = [
- executor.submit(transcription_handler, request, chunk_path, metadata)
- for chunk_path in chunk_paths
- ]
- # Gather results as they complete
- for future in futures:
- try:
- results.append(future.result())
- except Exception as transcribe_exc:
- raise HTTPException(
- status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
- detail=f"Error transcribing chunk: {transcribe_exc}",
- )
- finally:
- # Clean up only the temporary chunks, never the original file
- for chunk_path in chunk_paths:
- if chunk_path != file_path and os.path.isfile(chunk_path):
- try:
- os.remove(chunk_path)
- except Exception:
- pass
- return {
- "text": " ".join([result["text"] for result in results]),
- }
- def compress_audio(file_path):
- if os.path.getsize(file_path) > MAX_FILE_SIZE:
- id = os.path.splitext(os.path.basename(file_path))[
- 0
- ] # Handles names with multiple dots
- file_dir = os.path.dirname(file_path)
- audio = AudioSegment.from_file(file_path)
- audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio
- compressed_path = os.path.join(file_dir, f"{id}_compressed.mp3")
- audio.export(compressed_path, format="mp3", bitrate="32k")
- # log.debug(f"Compressed audio to {compressed_path}") # Uncomment if log is defined
- return compressed_path
- else:
- return file_path
- def split_audio(file_path, max_bytes, format="mp3", bitrate="32k"):
- """
- Splits audio into chunks not exceeding max_bytes.
- Returns a list of chunk file paths. If audio fits, returns list with original path.
- """
- file_size = os.path.getsize(file_path)
- if file_size <= max_bytes:
- return [file_path] # Nothing to split
- audio = AudioSegment.from_file(file_path)
- duration_ms = len(audio)
- orig_size = file_size
- approx_chunk_ms = max(int(duration_ms * (max_bytes / orig_size)) - 1000, 1000)
- chunks = []
- start = 0
- i = 0
- base, _ = os.path.splitext(file_path)
- while start < duration_ms:
- end = min(start + approx_chunk_ms, duration_ms)
- chunk = audio[start:end]
- chunk_path = f"{base}_chunk_{i}.{format}"
- chunk.export(chunk_path, format=format, bitrate=bitrate)
- # Reduce chunk duration if still too large
- while os.path.getsize(chunk_path) > max_bytes and (end - start) > 5000:
- end = start + ((end - start) // 2)
- chunk = audio[start:end]
- chunk.export(chunk_path, format=format, bitrate=bitrate)
- if os.path.getsize(chunk_path) > max_bytes:
- os.remove(chunk_path)
- raise Exception("Audio chunk cannot be reduced below max file size.")
- chunks.append(chunk_path)
- start = end
- i += 1
- return chunks
- @router.post("/transcriptions")
- def transcription(
- request: Request,
- file: UploadFile = File(...),
- language: Optional[str] = Form(None),
- user=Depends(get_verified_user),
- ):
- log.info(f"file.content_type: {file.content_type}")
- SUPPORTED_CONTENT_TYPES = {"video/webm"} # Extend if you add more video types!
- if not (
- file.content_type.startswith("audio/")
- or file.content_type in SUPPORTED_CONTENT_TYPES
- ):
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
- )
- try:
- ext = file.filename.split(".")[-1]
- id = uuid.uuid4()
- filename = f"{id}.{ext}"
- contents = file.file.read()
- file_dir = f"{CACHE_DIR}/audio/transcriptions"
- os.makedirs(file_dir, exist_ok=True)
- file_path = f"{file_dir}/{filename}"
- with open(file_path, "wb") as f:
- f.write(contents)
- try:
- metadata = None
- if language:
- metadata = {"language": language}
- result = transcribe(request, file_path, metadata)
- return {
- **result,
- "filename": os.path.basename(file_path),
- }
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- def get_available_models(request: Request) -> list[dict]:
- available_models = []
- if request.app.state.config.TTS_ENGINE == "openai":
- # Use custom endpoint if not using the official OpenAI API URL
- if not request.app.state.config.TTS_OPENAI_API_BASE_URL.startswith(
- "https://api.openai.com"
- ):
- try:
- response = requests.get(
- f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/models"
- )
- response.raise_for_status()
- data = response.json()
- available_models = data.get("models", [])
- except Exception as e:
- log.error(f"Error fetching models from custom endpoint: {str(e)}")
- available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}]
- else:
- available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}]
- elif request.app.state.config.TTS_ENGINE == "elevenlabs":
- try:
- response = requests.get(
- "https://api.elevenlabs.io/v1/models",
- headers={
- "xi-api-key": request.app.state.config.TTS_API_KEY,
- "Content-Type": "application/json",
- },
- timeout=5,
- )
- response.raise_for_status()
- models = response.json()
- available_models = [
- {"name": model["name"], "id": model["model_id"]} for model in models
- ]
- except requests.RequestException as e:
- log.error(f"Error fetching voices: {str(e)}")
- return available_models
- @router.get("/models")
- async def get_models(request: Request, user=Depends(get_verified_user)):
- return {"models": get_available_models(request)}
- def get_available_voices(request) -> dict:
- """Returns {voice_id: voice_name} dict"""
- available_voices = {}
- if request.app.state.config.TTS_ENGINE == "openai":
- # Use custom endpoint if not using the official OpenAI API URL
- if not request.app.state.config.TTS_OPENAI_API_BASE_URL.startswith(
- "https://api.openai.com"
- ):
- try:
- response = requests.get(
- f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/voices"
- )
- response.raise_for_status()
- data = response.json()
- voices_list = data.get("voices", [])
- available_voices = {voice["id"]: voice["name"] for voice in voices_list}
- except Exception as e:
- log.error(f"Error fetching voices from custom endpoint: {str(e)}")
- available_voices = {
- "alloy": "alloy",
- "echo": "echo",
- "fable": "fable",
- "onyx": "onyx",
- "nova": "nova",
- "shimmer": "shimmer",
- }
- else:
- available_voices = {
- "alloy": "alloy",
- "echo": "echo",
- "fable": "fable",
- "onyx": "onyx",
- "nova": "nova",
- "shimmer": "shimmer",
- }
- elif request.app.state.config.TTS_ENGINE == "elevenlabs":
- try:
- available_voices = get_elevenlabs_voices(
- api_key=request.app.state.config.TTS_API_KEY
- )
- except Exception:
- # Avoided @lru_cache with exception
- pass
- elif request.app.state.config.TTS_ENGINE == "azure":
- try:
- region = request.app.state.config.TTS_AZURE_SPEECH_REGION
- base_url = request.app.state.config.TTS_AZURE_SPEECH_BASE_URL
- url = (
- base_url or f"https://{region}.tts.speech.microsoft.com"
- ) + "/cognitiveservices/voices/list"
- headers = {
- "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY
- }
- response = requests.get(url, headers=headers)
- response.raise_for_status()
- voices = response.json()
- for voice in voices:
- available_voices[voice["ShortName"]] = (
- f"{voice['DisplayName']} ({voice['ShortName']})"
- )
- except requests.RequestException as e:
- log.error(f"Error fetching voices: {str(e)}")
- return available_voices
- @lru_cache
- def get_elevenlabs_voices(api_key: str) -> dict:
- """
- Note, set the following in your .env file to use Elevenlabs:
- AUDIO_TTS_ENGINE=elevenlabs
- AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key
- AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices
- AUDIO_TTS_MODEL=eleven_multilingual_v2
- """
- try:
- # TODO: Add retries
- response = requests.get(
- "https://api.elevenlabs.io/v1/voices",
- headers={
- "xi-api-key": api_key,
- "Content-Type": "application/json",
- },
- )
- response.raise_for_status()
- voices_data = response.json()
- voices = {}
- for voice in voices_data.get("voices", []):
- voices[voice["voice_id"]] = voice["name"]
- except requests.RequestException as e:
- # Avoid @lru_cache with exception
- log.error(f"Error fetching voices: {str(e)}")
- raise RuntimeError(f"Error fetching voices: {str(e)}")
- return voices
- @router.get("/voices")
- async def get_voices(request: Request, user=Depends(get_verified_user)):
- return {
- "voices": [
- {"id": k, "name": v} for k, v in get_available_voices(request).items()
- ]
- }
|