utils.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import asyncio
  6. import requests
  7. import hashlib
  8. from huggingface_hub import snapshot_download
  9. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  10. from langchain_community.retrievers import BM25Retriever
  11. from langchain_core.documents import Document
  12. from open_webui.config import VECTOR_DB
  13. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  14. from open_webui.utils.misc import get_last_user_message, calculate_sha256_string
  15. from open_webui.models.users import UserModel
  16. from open_webui.models.files import Files
  17. from open_webui.env import (
  18. SRC_LOG_LEVELS,
  19. OFFLINE_MODE,
  20. ENABLE_FORWARD_USER_INFO_HEADERS,
  21. )
  22. log = logging.getLogger(__name__)
  23. log.setLevel(SRC_LOG_LEVELS["RAG"])
  24. from typing import Any
  25. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  26. from langchain_core.retrievers import BaseRetriever
  27. class VectorSearchRetriever(BaseRetriever):
  28. collection_name: Any
  29. embedding_function: Any
  30. top_k: int
  31. def _get_relevant_documents(
  32. self,
  33. query: str,
  34. *,
  35. run_manager: CallbackManagerForRetrieverRun,
  36. ) -> list[Document]:
  37. result = VECTOR_DB_CLIENT.search(
  38. collection_name=self.collection_name,
  39. vectors=[self.embedding_function(query)],
  40. limit=self.top_k,
  41. )
  42. ids = result.ids[0]
  43. metadatas = result.metadatas[0]
  44. documents = result.documents[0]
  45. results = []
  46. for idx in range(len(ids)):
  47. results.append(
  48. Document(
  49. metadata=metadatas[idx],
  50. page_content=documents[idx],
  51. )
  52. )
  53. return results
  54. def query_doc(
  55. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  56. ):
  57. try:
  58. result = VECTOR_DB_CLIENT.search(
  59. collection_name=collection_name,
  60. vectors=[query_embedding],
  61. limit=k,
  62. )
  63. if result:
  64. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  65. return result
  66. except Exception as e:
  67. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  68. raise e
  69. def get_doc(collection_name: str, user: UserModel = None):
  70. try:
  71. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  72. if result:
  73. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  74. return result
  75. except Exception as e:
  76. log.exception(f"Error getting doc {collection_name}: {e}")
  77. raise e
  78. def query_doc_with_hybrid_search(
  79. collection_name: str,
  80. query: str,
  81. embedding_function,
  82. k: int,
  83. reranking_function,
  84. k_reranker: int,
  85. r: float,
  86. ) -> dict:
  87. try:
  88. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  89. bm25_retriever = BM25Retriever.from_texts(
  90. texts=result.documents[0],
  91. metadatas=result.metadatas[0],
  92. )
  93. bm25_retriever.k = k
  94. vector_search_retriever = VectorSearchRetriever(
  95. collection_name=collection_name,
  96. embedding_function=embedding_function,
  97. top_k=k,
  98. )
  99. ensemble_retriever = EnsembleRetriever(
  100. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  101. )
  102. compressor = RerankCompressor(
  103. embedding_function=embedding_function,
  104. top_n=k_reranker,
  105. reranking_function=reranking_function,
  106. r_score=r,
  107. )
  108. compression_retriever = ContextualCompressionRetriever(
  109. base_compressor=compressor, base_retriever=ensemble_retriever
  110. )
  111. result = compression_retriever.invoke(query)
  112. distances = [d.metadata.get("score") for d in result]
  113. documents = [d.page_content for d in result]
  114. metadatas = [d.metadata for d in result]
  115. # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
  116. if k < k_reranker:
  117. if VECTOR_DB == "chroma":
  118. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  119. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  120. sorted_items = sorted(zip(distances, metadatas, documents), key=lambda x: x[0], reverse=False)
  121. else:
  122. sorted_items = sorted(zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True)
  123. sorted_items = sorted_items[:k]
  124. distances, documents, metadatas = map(list, zip(*sorted_items))
  125. result = {
  126. "distances": [distances],
  127. "documents": [documents],
  128. "metadatas": [metadatas],
  129. }
  130. log.info(
  131. "query_doc_with_hybrid_search:result "
  132. + f'{result["metadatas"]} {result["distances"]}'
  133. )
  134. return result
  135. except Exception as e:
  136. raise e
  137. def merge_get_results(get_results: list[dict]) -> dict:
  138. # Initialize lists to store combined data
  139. combined_documents = []
  140. combined_metadatas = []
  141. combined_ids = []
  142. for data in get_results:
  143. combined_documents.extend(data["documents"][0])
  144. combined_metadatas.extend(data["metadatas"][0])
  145. combined_ids.extend(data["ids"][0])
  146. # Create the output dictionary
  147. result = {
  148. "documents": [combined_documents],
  149. "metadatas": [combined_metadatas],
  150. "ids": [combined_ids],
  151. }
  152. return result
  153. def merge_and_sort_query_results(
  154. query_results: list[dict], k: int, reverse: bool = False
  155. ) -> dict:
  156. # Initialize lists to store combined data
  157. combined = []
  158. seen_hashes = set() # To store unique document hashes
  159. for data in query_results:
  160. distances = data["distances"][0]
  161. documents = data["documents"][0]
  162. metadatas = data["metadatas"][0]
  163. for distance, document, metadata in zip(distances, documents, metadatas):
  164. if isinstance(document, str):
  165. doc_hash = hashlib.md5(
  166. document.encode()
  167. ).hexdigest() # Compute a hash for uniqueness
  168. if doc_hash not in seen_hashes:
  169. seen_hashes.add(doc_hash)
  170. combined.append((distance, document, metadata))
  171. # Sort the list based on distances
  172. combined.sort(key=lambda x: x[0], reverse=reverse)
  173. # Slice to keep only the top k elements
  174. sorted_distances, sorted_documents, sorted_metadatas = (
  175. zip(*combined[:k]) if combined else ([], [], [])
  176. )
  177. # Create and return the output dictionary
  178. return {
  179. "distances": [list(sorted_distances)],
  180. "documents": [list(sorted_documents)],
  181. "metadatas": [list(sorted_metadatas)],
  182. }
  183. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  184. results = []
  185. for collection_name in collection_names:
  186. if collection_name:
  187. try:
  188. result = get_doc(collection_name=collection_name)
  189. if result is not None:
  190. results.append(result.model_dump())
  191. except Exception as e:
  192. log.exception(f"Error when querying the collection: {e}")
  193. else:
  194. pass
  195. return merge_get_results(results)
  196. def query_collection(
  197. collection_names: list[str],
  198. queries: list[str],
  199. embedding_function,
  200. k: int,
  201. ) -> dict:
  202. results = []
  203. for query in queries:
  204. query_embedding = embedding_function(query)
  205. for collection_name in collection_names:
  206. if collection_name:
  207. try:
  208. result = query_doc(
  209. collection_name=collection_name,
  210. k=k,
  211. query_embedding=query_embedding,
  212. )
  213. if result is not None:
  214. results.append(result.model_dump())
  215. except Exception as e:
  216. log.exception(f"Error when querying the collection: {e}")
  217. else:
  218. pass
  219. if VECTOR_DB == "chroma":
  220. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  221. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  222. return merge_and_sort_query_results(results, k=k, reverse=False)
  223. else:
  224. return merge_and_sort_query_results(results, k=k, reverse=True)
  225. def query_collection_with_hybrid_search(
  226. collection_names: list[str],
  227. queries: list[str],
  228. embedding_function,
  229. k: int,
  230. reranking_function,
  231. k_reranker: int,
  232. r: float,
  233. ) -> dict:
  234. results = []
  235. error = False
  236. for collection_name in collection_names:
  237. try:
  238. for query in queries:
  239. result = query_doc_with_hybrid_search(
  240. collection_name=collection_name,
  241. query=query,
  242. embedding_function=embedding_function,
  243. k=k,
  244. reranking_function=reranking_function,
  245. k_reranker=k_reranker,
  246. r=r,
  247. )
  248. results.append(result)
  249. except Exception as e:
  250. log.exception(
  251. "Error when querying the collection with " f"hybrid_search: {e}"
  252. )
  253. error = True
  254. if error:
  255. raise Exception(
  256. "Hybrid search failed for all collections. Using Non hybrid search as fallback."
  257. )
  258. if VECTOR_DB == "chroma":
  259. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  260. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  261. return merge_and_sort_query_results(results, k=k_reranker, reverse=False)
  262. else:
  263. return merge_and_sort_query_results(results, k=k_reranker, reverse=True)
  264. def get_embedding_function(
  265. embedding_engine,
  266. embedding_model,
  267. embedding_function,
  268. url,
  269. key,
  270. embedding_batch_size,
  271. ):
  272. if embedding_engine == "":
  273. return lambda query, user=None: embedding_function.encode(query).tolist()
  274. elif embedding_engine in ["ollama", "openai"]:
  275. func = lambda query, user=None: generate_embeddings(
  276. engine=embedding_engine,
  277. model=embedding_model,
  278. text=query,
  279. url=url,
  280. key=key,
  281. user=user,
  282. )
  283. def generate_multiple(query, user, func):
  284. if isinstance(query, list):
  285. embeddings = []
  286. for i in range(0, len(query), embedding_batch_size):
  287. embeddings.extend(
  288. func(query[i : i + embedding_batch_size], user=user)
  289. )
  290. return embeddings
  291. else:
  292. return func(query, user)
  293. return lambda query, user=None: generate_multiple(query, user, func)
  294. else:
  295. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  296. def get_sources_from_files(
  297. request,
  298. files,
  299. queries,
  300. embedding_function,
  301. k,
  302. reranking_function,
  303. k_reranker,
  304. r,
  305. hybrid_search,
  306. full_context=False,
  307. ):
  308. log.debug(
  309. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  310. )
  311. extracted_collections = []
  312. relevant_contexts = []
  313. for file in files:
  314. context = None
  315. if file.get("docs"):
  316. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  317. context = {
  318. "documents": [[doc.get("content") for doc in file.get("docs")]],
  319. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  320. }
  321. elif file.get("context") == "full":
  322. # Manual Full Mode Toggle
  323. context = {
  324. "documents": [[file.get("file").get("data", {}).get("content")]],
  325. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  326. }
  327. elif (
  328. file.get("type") != "web_search"
  329. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  330. ):
  331. # BYPASS_EMBEDDING_AND_RETRIEVAL
  332. if file.get("type") == "collection":
  333. file_ids = file.get("data", {}).get("file_ids", [])
  334. documents = []
  335. metadatas = []
  336. for file_id in file_ids:
  337. file_object = Files.get_file_by_id(file_id)
  338. if file_object:
  339. documents.append(file_object.data.get("content", ""))
  340. metadatas.append(
  341. {
  342. "file_id": file_id,
  343. "name": file_object.filename,
  344. "source": file_object.filename,
  345. }
  346. )
  347. context = {
  348. "documents": [documents],
  349. "metadatas": [metadatas],
  350. }
  351. elif file.get("id"):
  352. file_object = Files.get_file_by_id(file.get("id"))
  353. if file_object:
  354. context = {
  355. "documents": [[file_object.data.get("content", "")]],
  356. "metadatas": [
  357. [
  358. {
  359. "file_id": file.get("id"),
  360. "name": file_object.filename,
  361. "source": file_object.filename,
  362. }
  363. ]
  364. ],
  365. }
  366. elif file.get("file").get("data"):
  367. context = {
  368. "documents": [[file.get("file").get("data", {}).get("content")]],
  369. "metadatas": [
  370. [file.get("file").get("data", {}).get("metadata", {})]
  371. ],
  372. }
  373. else:
  374. collection_names = []
  375. if file.get("type") == "collection":
  376. if file.get("legacy"):
  377. collection_names = file.get("collection_names", [])
  378. else:
  379. collection_names.append(file["id"])
  380. elif file.get("collection_name"):
  381. collection_names.append(file["collection_name"])
  382. elif file.get("id"):
  383. if file.get("legacy"):
  384. collection_names.append(f"{file['id']}")
  385. else:
  386. collection_names.append(f"file-{file['id']}")
  387. collection_names = set(collection_names).difference(extracted_collections)
  388. if not collection_names:
  389. log.debug(f"skipping {file} as it has already been extracted")
  390. continue
  391. if full_context:
  392. try:
  393. context = get_all_items_from_collections(collection_names)
  394. except Exception as e:
  395. log.exception(e)
  396. else:
  397. try:
  398. context = None
  399. if file.get("type") == "text":
  400. context = file["content"]
  401. else:
  402. if hybrid_search:
  403. try:
  404. context = query_collection_with_hybrid_search(
  405. collection_names=collection_names,
  406. queries=queries,
  407. embedding_function=embedding_function,
  408. k=k,
  409. reranking_function=reranking_function,
  410. k_reranker=k_reranker,
  411. r=r,
  412. )
  413. except Exception as e:
  414. log.debug(
  415. "Error when using hybrid search, using"
  416. " non hybrid search as fallback."
  417. )
  418. if (not hybrid_search) or (context is None):
  419. context = query_collection(
  420. collection_names=collection_names,
  421. queries=queries,
  422. embedding_function=embedding_function,
  423. k=k,
  424. )
  425. except Exception as e:
  426. log.exception(e)
  427. extracted_collections.extend(collection_names)
  428. if context:
  429. if "data" in file:
  430. del file["data"]
  431. relevant_contexts.append({**context, "file": file})
  432. sources = []
  433. for context in relevant_contexts:
  434. try:
  435. if "documents" in context:
  436. if "metadatas" in context:
  437. source = {
  438. "source": context["file"],
  439. "document": context["documents"][0],
  440. "metadata": context["metadatas"][0],
  441. }
  442. if "distances" in context and context["distances"]:
  443. source["distances"] = context["distances"][0]
  444. sources.append(source)
  445. except Exception as e:
  446. log.exception(e)
  447. return sources
  448. def get_model_path(model: str, update_model: bool = False):
  449. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  450. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  451. local_files_only = not update_model
  452. if OFFLINE_MODE:
  453. local_files_only = True
  454. snapshot_kwargs = {
  455. "cache_dir": cache_dir,
  456. "local_files_only": local_files_only,
  457. }
  458. log.debug(f"model: {model}")
  459. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  460. # Inspiration from upstream sentence_transformers
  461. if (
  462. os.path.exists(model)
  463. or ("\\" in model or model.count("/") > 1)
  464. and local_files_only
  465. ):
  466. # If fully qualified path exists, return input, else set repo_id
  467. return model
  468. elif "/" not in model:
  469. # Set valid repo_id for model short-name
  470. model = "sentence-transformers" + "/" + model
  471. snapshot_kwargs["repo_id"] = model
  472. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  473. try:
  474. model_repo_path = snapshot_download(**snapshot_kwargs)
  475. log.debug(f"model_repo_path: {model_repo_path}")
  476. return model_repo_path
  477. except Exception as e:
  478. log.exception(f"Cannot determine model snapshot path: {e}")
  479. return model
  480. def generate_openai_batch_embeddings(
  481. model: str,
  482. texts: list[str],
  483. url: str = "https://api.openai.com/v1",
  484. key: str = "",
  485. user: UserModel = None,
  486. ) -> Optional[list[list[float]]]:
  487. try:
  488. r = requests.post(
  489. f"{url}/embeddings",
  490. headers={
  491. "Content-Type": "application/json",
  492. "Authorization": f"Bearer {key}",
  493. **(
  494. {
  495. "X-OpenWebUI-User-Name": user.name,
  496. "X-OpenWebUI-User-Id": user.id,
  497. "X-OpenWebUI-User-Email": user.email,
  498. "X-OpenWebUI-User-Role": user.role,
  499. }
  500. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  501. else {}
  502. ),
  503. },
  504. json={"input": texts, "model": model},
  505. )
  506. r.raise_for_status()
  507. data = r.json()
  508. if "data" in data:
  509. return [elem["embedding"] for elem in data["data"]]
  510. else:
  511. raise "Something went wrong :/"
  512. except Exception as e:
  513. log.exception(f"Error generating openai batch embeddings: {e}")
  514. return None
  515. def generate_ollama_batch_embeddings(
  516. model: str, texts: list[str], url: str, key: str = "", user: UserModel = None
  517. ) -> Optional[list[list[float]]]:
  518. try:
  519. r = requests.post(
  520. f"{url}/api/embed",
  521. headers={
  522. "Content-Type": "application/json",
  523. "Authorization": f"Bearer {key}",
  524. **(
  525. {
  526. "X-OpenWebUI-User-Name": user.name,
  527. "X-OpenWebUI-User-Id": user.id,
  528. "X-OpenWebUI-User-Email": user.email,
  529. "X-OpenWebUI-User-Role": user.role,
  530. }
  531. if ENABLE_FORWARD_USER_INFO_HEADERS
  532. else {}
  533. ),
  534. },
  535. json={"input": texts, "model": model},
  536. )
  537. r.raise_for_status()
  538. data = r.json()
  539. if "embeddings" in data:
  540. return data["embeddings"]
  541. else:
  542. raise "Something went wrong :/"
  543. except Exception as e:
  544. log.exception(f"Error generating ollama batch embeddings: {e}")
  545. return None
  546. def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
  547. url = kwargs.get("url", "")
  548. key = kwargs.get("key", "")
  549. user = kwargs.get("user")
  550. if engine == "ollama":
  551. if isinstance(text, list):
  552. embeddings = generate_ollama_batch_embeddings(
  553. **{"model": model, "texts": text, "url": url, "key": key, "user": user}
  554. )
  555. else:
  556. embeddings = generate_ollama_batch_embeddings(
  557. **{
  558. "model": model,
  559. "texts": [text],
  560. "url": url,
  561. "key": key,
  562. "user": user,
  563. }
  564. )
  565. return embeddings[0] if isinstance(text, str) else embeddings
  566. elif engine == "openai":
  567. if isinstance(text, list):
  568. embeddings = generate_openai_batch_embeddings(model, text, url, key, user)
  569. else:
  570. embeddings = generate_openai_batch_embeddings(model, [text], url, key, user)
  571. return embeddings[0] if isinstance(text, str) else embeddings
  572. import operator
  573. from typing import Optional, Sequence
  574. from langchain_core.callbacks import Callbacks
  575. from langchain_core.documents import BaseDocumentCompressor, Document
  576. class RerankCompressor(BaseDocumentCompressor):
  577. embedding_function: Any
  578. top_n: int
  579. reranking_function: Any
  580. r_score: float
  581. class Config:
  582. extra = "forbid"
  583. arbitrary_types_allowed = True
  584. def compress_documents(
  585. self,
  586. documents: Sequence[Document],
  587. query: str,
  588. callbacks: Optional[Callbacks] = None,
  589. ) -> Sequence[Document]:
  590. reranking = self.reranking_function is not None
  591. if reranking:
  592. scores = self.reranking_function.predict(
  593. [(query, doc.page_content) for doc in documents]
  594. )
  595. else:
  596. from sentence_transformers import util
  597. query_embedding = self.embedding_function(query)
  598. document_embedding = self.embedding_function(
  599. [doc.page_content for doc in documents]
  600. )
  601. scores = util.cos_sim(query_embedding, document_embedding)[0]
  602. docs_with_scores = list(zip(documents, scores.tolist()))
  603. if self.r_score:
  604. docs_with_scores = [
  605. (d, s) for d, s in docs_with_scores if s >= self.r_score
  606. ]
  607. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  608. final_results = []
  609. for doc, doc_score in result[: self.top_n]:
  610. metadata = doc.metadata
  611. metadata["score"] = doc_score
  612. doc = Document(
  613. page_content=doc.page_content,
  614. metadata=metadata,
  615. )
  616. final_results.append(doc)
  617. return final_results