Dockerfile 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. # syntax=docker/dockerfile:1
  2. ######## WebUI frontend ########
  3. FROM node:21-alpine3.19 as build
  4. WORKDIR /app
  5. #RUN apt-get update \
  6. # && apt-get install -y --no-install-recommends wget \
  7. # # cleanup
  8. # && rm -rf /var/lib/apt/lists/*
  9. # wget embedding model weight from alpine (does not exist from slim-buster)
  10. #RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \
  11. # tar -xzf - -C /app
  12. COPY package.json package-lock.json ./
  13. RUN npm ci
  14. COPY . .
  15. RUN npm run build
  16. ######## WebUI backend ########
  17. FROM python:3.11-slim-bookworm as base
  18. ## Basis ##
  19. ENV ENV=prod \
  20. PORT=8080
  21. ## Basis URL Config ##
  22. ENV OLLAMA_BASE_URL="/ollama" \
  23. OPENAI_API_BASE_URL=""
  24. ## API Key and Security Config ##
  25. ENV OPENAI_API_KEY="" \
  26. WEBUI_SECRET_KEY="" \
  27. SCARF_NO_ANALYTICS=true \
  28. DO_NOT_TRACK=true
  29. #### Preloaded models ##########################################################
  30. ## whisper TTS Settings ##
  31. ENV WHISPER_MODEL="base" \
  32. WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
  33. ## RAG Embedding Model Settings ##
  34. # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
  35. # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
  36. # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
  37. # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
  38. ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" \
  39. # device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
  40. RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" \
  41. RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \
  42. SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
  43. #### Preloaded models ##########################################################
  44. WORKDIR /app/backend
  45. # install python dependencies
  46. COPY ./backend/requirements.txt ./requirements.txt
  47. RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir \
  48. && pip3 install -r requirements.txt --no-cache-dir
  49. # install required packages
  50. RUN apt-get update \
  51. # Install pandoc and netcat
  52. && apt-get install -y --no-install-recommends pandoc netcat-openbsd \
  53. # for RAG OCR
  54. && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 \
  55. # cleanup
  56. && rm -rf /var/lib/apt/lists/*
  57. # preload embedding model
  58. RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
  59. # preload tts model
  60. RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
  61. # copy embedding weight from build
  62. # RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
  63. # COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
  64. # copy built frontend files
  65. COPY --from=build /app/build /app/build
  66. COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md
  67. COPY --from=build /app/package.json /app/package.json
  68. # copy backend files
  69. COPY ./backend .
  70. CMD [ "bash", "start.sh"]