12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- # syntax=docker/dockerfile:1
- ######## WebUI frontend ########
- FROM node:21-alpine3.19 as build
- WORKDIR /app
- #RUN apt-get update \
- # && apt-get install -y --no-install-recommends wget \
- # # cleanup
- # && rm -rf /var/lib/apt/lists/*
- # wget embedding model weight from alpine (does not exist from slim-buster)
- #RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \
- # tar -xzf - -C /app
- COPY package.json package-lock.json ./
- RUN npm ci
- COPY . .
- RUN npm run build
- ######## WebUI backend ########
- FROM python:3.11-slim-bookworm as base
- ## Basis ##
- ENV ENV=prod \
- PORT=8080
- ## Basis URL Config ##
- ENV OLLAMA_BASE_URL="/ollama" \
- OPENAI_API_BASE_URL=""
- ## API Key and Security Config ##
- ENV OPENAI_API_KEY="" \
- WEBUI_SECRET_KEY="" \
- SCARF_NO_ANALYTICS=true \
- DO_NOT_TRACK=true
- #### Preloaded models ##########################################################
- ## whisper TTS Settings ##
- ENV WHISPER_MODEL="base" \
- WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
- ## RAG Embedding Model Settings ##
- # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
- # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
- # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
- # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
- ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" \
- # device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
- RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" \
- RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \
- SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
- #### Preloaded models ##########################################################
- WORKDIR /app/backend
- # install python dependencies
- COPY ./backend/requirements.txt ./requirements.txt
- RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir \
- && pip3 install -r requirements.txt --no-cache-dir
- # install required packages
- RUN apt-get update \
- # Install pandoc and netcat
- && apt-get install -y --no-install-recommends pandoc netcat-openbsd \
- # for RAG OCR
- && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 \
- # cleanup
- && rm -rf /var/lib/apt/lists/*
- # preload embedding model
- RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
- # preload tts model
- RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
- # copy embedding weight from build
- # RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
- # COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
- # copy built frontend files
- COPY --from=build /app/build /app/build
- COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md
- COPY --from=build /app/package.json /app/package.json
- # copy backend files
- COPY ./backend .
- CMD [ "bash", "start.sh"]
|