pgvector.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. from typing import Optional, List, Dict, Any
  2. import logging
  3. import json
  4. from sqlalchemy import (
  5. func,
  6. literal,
  7. cast,
  8. column,
  9. create_engine,
  10. Column,
  11. Integer,
  12. MetaData,
  13. LargeBinary,
  14. select,
  15. text,
  16. Text,
  17. Table,
  18. values,
  19. )
  20. from sqlalchemy.sql import true
  21. from sqlalchemy.pool import NullPool
  22. from sqlalchemy.orm import declarative_base, scoped_session, sessionmaker
  23. from sqlalchemy.dialects.postgresql import JSONB, array
  24. from pgvector.sqlalchemy import Vector
  25. from sqlalchemy.ext.mutable import MutableDict
  26. from sqlalchemy.exc import NoSuchTableError
  27. from open_webui.retrieval.vector.main import (
  28. VectorDBBase,
  29. VectorItem,
  30. SearchResult,
  31. GetResult,
  32. )
  33. from open_webui.config import (
  34. PGVECTOR_DB_URL,
  35. PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH,
  36. PGVECTOR_PGCRYPTO,
  37. PGVECTOR_PGCRYPTO_KEY,
  38. )
  39. from open_webui.env import SRC_LOG_LEVELS
  40. VECTOR_LENGTH = PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH
  41. Base = declarative_base()
  42. log = logging.getLogger(__name__)
  43. log.setLevel(SRC_LOG_LEVELS["RAG"])
  44. def pgcrypto_encrypt(val, key):
  45. return func.pgp_sym_encrypt(val, literal(key))
  46. def pgcrypto_decrypt(col, key, outtype="text"):
  47. return func.cast(func.pgp_sym_decrypt(col, literal(key)), outtype)
  48. class DocumentChunk(Base):
  49. __tablename__ = "document_chunk"
  50. id = Column(Text, primary_key=True)
  51. vector = Column(Vector(dim=VECTOR_LENGTH), nullable=True)
  52. collection_name = Column(Text, nullable=False)
  53. if PGVECTOR_PGCRYPTO:
  54. text = Column(LargeBinary, nullable=True)
  55. vmetadata = Column(LargeBinary, nullable=True)
  56. else:
  57. text = Column(Text, nullable=True)
  58. vmetadata = Column(MutableDict.as_mutable(JSONB), nullable=True)
  59. class PgvectorClient(VectorDBBase):
  60. def __init__(self) -> None:
  61. # if no pgvector uri, use the existing database connection
  62. if not PGVECTOR_DB_URL:
  63. from open_webui.internal.db import Session
  64. self.session = Session
  65. else:
  66. engine = create_engine(
  67. PGVECTOR_DB_URL, pool_pre_ping=True, poolclass=NullPool
  68. )
  69. SessionLocal = sessionmaker(
  70. autocommit=False, autoflush=False, bind=engine, expire_on_commit=False
  71. )
  72. self.session = scoped_session(SessionLocal)
  73. try:
  74. # Ensure the pgvector extension is available
  75. self.session.execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))
  76. # Check vector length consistency
  77. self.check_vector_length()
  78. # Create the tables if they do not exist
  79. # Base.metadata.create_all requires a bind (engine or connection)
  80. # Get the connection from the session
  81. connection = self.session.connection()
  82. Base.metadata.create_all(bind=connection)
  83. # Create an index on the vector column if it doesn't exist
  84. self.session.execute(
  85. text(
  86. "CREATE INDEX IF NOT EXISTS idx_document_chunk_vector "
  87. "ON document_chunk USING ivfflat (vector vector_cosine_ops) WITH (lists = 100);"
  88. )
  89. )
  90. self.session.execute(
  91. text(
  92. "CREATE INDEX IF NOT EXISTS idx_document_chunk_collection_name "
  93. "ON document_chunk (collection_name);"
  94. )
  95. )
  96. self.session.commit()
  97. log.info("Initialization complete.")
  98. except Exception as e:
  99. self.session.rollback()
  100. log.exception(f"Error during initialization: {e}")
  101. raise
  102. def check_vector_length(self) -> None:
  103. """
  104. Check if the VECTOR_LENGTH matches the existing vector column dimension in the database.
  105. Raises an exception if there is a mismatch.
  106. """
  107. metadata = MetaData()
  108. try:
  109. # Attempt to reflect the 'document_chunk' table
  110. document_chunk_table = Table(
  111. "document_chunk", metadata, autoload_with=self.session.bind
  112. )
  113. except NoSuchTableError:
  114. # Table does not exist; no action needed
  115. return
  116. # Proceed to check the vector column
  117. if "vector" in document_chunk_table.columns:
  118. vector_column = document_chunk_table.columns["vector"]
  119. vector_type = vector_column.type
  120. if isinstance(vector_type, Vector):
  121. db_vector_length = vector_type.dim
  122. if db_vector_length != VECTOR_LENGTH:
  123. raise Exception(
  124. f"VECTOR_LENGTH {VECTOR_LENGTH} does not match existing vector column dimension {db_vector_length}. "
  125. "Cannot change vector size after initialization without migrating the data."
  126. )
  127. else:
  128. raise Exception(
  129. "The 'vector' column exists but is not of type 'Vector'."
  130. )
  131. else:
  132. raise Exception(
  133. "The 'vector' column does not exist in the 'document_chunk' table."
  134. )
  135. def adjust_vector_length(self, vector: List[float]) -> List[float]:
  136. # Adjust vector to have length VECTOR_LENGTH
  137. current_length = len(vector)
  138. if current_length < VECTOR_LENGTH:
  139. # Pad the vector with zeros
  140. vector += [0.0] * (VECTOR_LENGTH - current_length)
  141. elif current_length > VECTOR_LENGTH:
  142. # Truncate the vector to VECTOR_LENGTH
  143. vector = vector[:VECTOR_LENGTH]
  144. return vector
  145. def insert(self, collection_name: str, items: List[VectorItem]) -> None:
  146. try:
  147. if PGVECTOR_PGCRYPTO:
  148. for item in items:
  149. vector = self.adjust_vector_length(item["vector"])
  150. # Use raw SQL for BYTEA/pgcrypto
  151. self.session.execute(
  152. text(
  153. """
  154. INSERT INTO document_chunk
  155. (id, vector, collection_name, text, vmetadata)
  156. VALUES (
  157. :id, :vector, :collection_name,
  158. pgp_sym_encrypt(:text, :key),
  159. pgp_sym_encrypt(:metadata::text, :key)
  160. )
  161. ON CONFLICT (id) DO NOTHING
  162. """
  163. ),
  164. {
  165. "id": item["id"],
  166. "vector": vector,
  167. "collection_name": collection_name,
  168. "text": item["text"],
  169. "metadata": json.dumps(item["metadata"]),
  170. "key": PGVECTOR_PGCRYPTO_KEY,
  171. },
  172. )
  173. self.session.commit()
  174. log.info(f"Encrypted & inserted {len(items)} into '{collection_name}'")
  175. else:
  176. new_items = []
  177. for item in items:
  178. vector = self.adjust_vector_length(item["vector"])
  179. new_chunk = DocumentChunk(
  180. id=item["id"],
  181. vector=vector,
  182. collection_name=collection_name,
  183. text=item["text"],
  184. vmetadata=item["metadata"],
  185. )
  186. new_items.append(new_chunk)
  187. self.session.bulk_save_objects(new_items)
  188. self.session.commit()
  189. log.info(
  190. f"Inserted {len(new_items)} items into collection '{collection_name}'."
  191. )
  192. except Exception as e:
  193. self.session.rollback()
  194. log.exception(f"Error during insert: {e}")
  195. raise
  196. def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
  197. try:
  198. if PGVECTOR_PGCRYPTO:
  199. for item in items:
  200. vector = self.adjust_vector_length(item["vector"])
  201. self.session.execute(
  202. text(
  203. """
  204. INSERT INTO document_chunk
  205. (id, vector, collection_name, text, vmetadata)
  206. VALUES (
  207. :id, :vector, :collection_name,
  208. pgp_sym_encrypt(:text, :key),
  209. pgp_sym_encrypt(:metadata::text, :key)
  210. )
  211. ON CONFLICT (id) DO UPDATE SET
  212. vector = EXCLUDED.vector,
  213. collection_name = EXCLUDED.collection_name,
  214. text = EXCLUDED.text,
  215. vmetadata = EXCLUDED.vmetadata
  216. """
  217. ),
  218. {
  219. "id": item["id"],
  220. "vector": vector,
  221. "collection_name": collection_name,
  222. "text": item["text"],
  223. "metadata": json.dumps(item["metadata"]),
  224. "key": PGVECTOR_PGCRYPTO_KEY,
  225. },
  226. )
  227. self.session.commit()
  228. log.info(f"Encrypted & upserted {len(items)} into '{collection_name}'")
  229. else:
  230. for item in items:
  231. vector = self.adjust_vector_length(item["vector"])
  232. existing = (
  233. self.session.query(DocumentChunk)
  234. .filter(DocumentChunk.id == item["id"])
  235. .first()
  236. )
  237. if existing:
  238. existing.vector = vector
  239. existing.text = item["text"]
  240. existing.vmetadata = item["metadata"]
  241. existing.collection_name = (
  242. collection_name # Update collection_name if necessary
  243. )
  244. else:
  245. new_chunk = DocumentChunk(
  246. id=item["id"],
  247. vector=vector,
  248. collection_name=collection_name,
  249. text=item["text"],
  250. vmetadata=item["metadata"],
  251. )
  252. self.session.add(new_chunk)
  253. self.session.commit()
  254. log.info(
  255. f"Upserted {len(items)} items into collection '{collection_name}'."
  256. )
  257. except Exception as e:
  258. self.session.rollback()
  259. log.exception(f"Error during upsert: {e}")
  260. raise
  261. def search(
  262. self,
  263. collection_name: str,
  264. vectors: List[List[float]],
  265. limit: Optional[int] = None,
  266. ) -> Optional[SearchResult]:
  267. try:
  268. if not vectors:
  269. return None
  270. # Adjust query vectors to VECTOR_LENGTH
  271. vectors = [self.adjust_vector_length(vector) for vector in vectors]
  272. num_queries = len(vectors)
  273. def vector_expr(vector):
  274. return cast(array(vector), Vector(VECTOR_LENGTH))
  275. # Create the values for query vectors
  276. qid_col = column("qid", Integer)
  277. q_vector_col = column("q_vector", Vector(VECTOR_LENGTH))
  278. query_vectors = (
  279. values(qid_col, q_vector_col)
  280. .data(
  281. [(idx, vector_expr(vector)) for idx, vector in enumerate(vectors)]
  282. )
  283. .alias("query_vectors")
  284. )
  285. result_fields = [
  286. DocumentChunk.id,
  287. ]
  288. if PGVECTOR_PGCRYPTO:
  289. result_fields.append(
  290. pgcrypto_decrypt(
  291. DocumentChunk.text, PGVECTOR_PGCRYPTO_KEY, Text
  292. ).label("text")
  293. )
  294. result_fields.append(
  295. pgcrypto_decrypt(
  296. DocumentChunk.vmetadata, PGVECTOR_PGCRYPTO_KEY, JSONB
  297. ).label("vmetadata")
  298. )
  299. else:
  300. result_fields.append(DocumentChunk.text)
  301. result_fields.append(DocumentChunk.vmetadata)
  302. result_fields.append(
  303. (DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector)).label(
  304. "distance"
  305. )
  306. )
  307. # Build the lateral subquery for each query vector
  308. subq = (
  309. select(*result_fields)
  310. .where(DocumentChunk.collection_name == collection_name)
  311. .order_by(
  312. (DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector))
  313. )
  314. )
  315. if limit is not None:
  316. subq = subq.limit(limit)
  317. subq = subq.lateral("result")
  318. # Build the main query by joining query_vectors and the lateral subquery
  319. stmt = (
  320. select(
  321. query_vectors.c.qid,
  322. subq.c.id,
  323. subq.c.text,
  324. subq.c.vmetadata,
  325. subq.c.distance,
  326. )
  327. .select_from(query_vectors)
  328. .join(subq, true())
  329. .order_by(query_vectors.c.qid, subq.c.distance)
  330. )
  331. result_proxy = self.session.execute(stmt)
  332. results = result_proxy.all()
  333. ids = [[] for _ in range(num_queries)]
  334. distances = [[] for _ in range(num_queries)]
  335. documents = [[] for _ in range(num_queries)]
  336. metadatas = [[] for _ in range(num_queries)]
  337. if not results:
  338. return SearchResult(
  339. ids=ids,
  340. distances=distances,
  341. documents=documents,
  342. metadatas=metadatas,
  343. )
  344. for row in results:
  345. qid = int(row.qid)
  346. ids[qid].append(row.id)
  347. # normalize and re-orders pgvec distance from [2, 0] to [0, 1] score range
  348. # https://github.com/pgvector/pgvector?tab=readme-ov-file#querying
  349. distances[qid].append((2.0 - row.distance) / 2.0)
  350. documents[qid].append(row.text)
  351. metadatas[qid].append(row.vmetadata)
  352. return SearchResult(
  353. ids=ids, distances=distances, documents=documents, metadatas=metadatas
  354. )
  355. except Exception as e:
  356. log.exception(f"Error during search: {e}")
  357. return None
  358. def query(
  359. self, collection_name: str, filter: Dict[str, Any], limit: Optional[int] = None
  360. ) -> Optional[GetResult]:
  361. try:
  362. if PGVECTOR_PGCRYPTO:
  363. # Build where clause for vmetadata filter
  364. where_clauses = [DocumentChunk.collection_name == collection_name]
  365. for key, value in filter.items():
  366. # decrypt then check key: JSON filter after decryption
  367. where_clauses.append(
  368. pgcrypto_decrypt(
  369. DocumentChunk.vmetadata, PGVECTOR_PGCRYPTO_KEY, JSONB
  370. )[key].astext
  371. == str(value)
  372. )
  373. stmt = select(
  374. DocumentChunk.id,
  375. pgcrypto_decrypt(
  376. DocumentChunk.text, PGVECTOR_PGCRYPTO_KEY, Text
  377. ).label("text"),
  378. pgcrypto_decrypt(
  379. DocumentChunk.vmetadata, PGVECTOR_PGCRYPTO_KEY, JSONB
  380. ).label("vmetadata"),
  381. ).where(*where_clauses)
  382. if limit is not None:
  383. stmt = stmt.limit(limit)
  384. results = self.session.execute(stmt).all()
  385. else:
  386. query = self.session.query(DocumentChunk).filter(
  387. DocumentChunk.collection_name == collection_name
  388. )
  389. for key, value in filter.items():
  390. query = query.filter(
  391. DocumentChunk.vmetadata[key].astext == str(value)
  392. )
  393. if limit is not None:
  394. query = query.limit(limit)
  395. results = query.all()
  396. if not results:
  397. return None
  398. ids = [[result.id for result in results]]
  399. documents = [[result.text for result in results]]
  400. metadatas = [[result.vmetadata for result in results]]
  401. return GetResult(
  402. ids=ids,
  403. documents=documents,
  404. metadatas=metadatas,
  405. )
  406. except Exception as e:
  407. log.exception(f"Error during query: {e}")
  408. return None
  409. def get(
  410. self, collection_name: str, limit: Optional[int] = None
  411. ) -> Optional[GetResult]:
  412. try:
  413. if PGVECTOR_PGCRYPTO:
  414. stmt = select(
  415. DocumentChunk.id,
  416. pgcrypto_decrypt(
  417. DocumentChunk.text, PGVECTOR_PGCRYPTO_KEY, Text
  418. ).label("text"),
  419. pgcrypto_decrypt(
  420. DocumentChunk.vmetadata, PGVECTOR_PGCRYPTO_KEY, JSONB
  421. ).label("vmetadata"),
  422. ).where(DocumentChunk.collection_name == collection_name)
  423. if limit is not None:
  424. stmt = stmt.limit(limit)
  425. results = self.session.execute(stmt).all()
  426. ids = [[row.id for row in results]]
  427. documents = [[row.text for row in results]]
  428. metadatas = [[row.vmetadata for row in results]]
  429. else:
  430. query = self.session.query(DocumentChunk).filter(
  431. DocumentChunk.collection_name == collection_name
  432. )
  433. if limit is not None:
  434. query = query.limit(limit)
  435. results = query.all()
  436. if not results:
  437. return None
  438. ids = [[result.id for result in results]]
  439. documents = [[result.text for result in results]]
  440. metadatas = [[result.vmetadata for result in results]]
  441. return GetResult(ids=ids, documents=documents, metadatas=metadatas)
  442. except Exception as e:
  443. log.exception(f"Error during get: {e}")
  444. return None
  445. def delete(
  446. self,
  447. collection_name: str,
  448. ids: Optional[List[str]] = None,
  449. filter: Optional[Dict[str, Any]] = None,
  450. ) -> None:
  451. try:
  452. if PGVECTOR_PGCRYPTO:
  453. wheres = [DocumentChunk.collection_name == collection_name]
  454. if ids:
  455. wheres.append(DocumentChunk.id.in_(ids))
  456. if filter:
  457. for key, value in filter.items():
  458. wheres.append(
  459. pgcrypto_decrypt(
  460. DocumentChunk.vmetadata, PGVECTOR_PGCRYPTO_KEY, JSONB
  461. )[key].astext
  462. == str(value)
  463. )
  464. stmt = DocumentChunk.__table__.delete().where(*wheres)
  465. result = self.session.execute(stmt)
  466. deleted = result.rowcount
  467. else:
  468. query = self.session.query(DocumentChunk).filter(
  469. DocumentChunk.collection_name == collection_name
  470. )
  471. if ids:
  472. query = query.filter(DocumentChunk.id.in_(ids))
  473. if filter:
  474. for key, value in filter.items():
  475. query = query.filter(
  476. DocumentChunk.vmetadata[key].astext == str(value)
  477. )
  478. deleted = query.delete(synchronize_session=False)
  479. self.session.commit()
  480. log.info(f"Deleted {deleted} items from collection '{collection_name}'.")
  481. except Exception as e:
  482. self.session.rollback()
  483. log.exception(f"Error during delete: {e}")
  484. raise
  485. def reset(self) -> None:
  486. try:
  487. deleted = self.session.query(DocumentChunk).delete()
  488. self.session.commit()
  489. log.info(
  490. f"Reset complete. Deleted {deleted} items from 'document_chunk' table."
  491. )
  492. except Exception as e:
  493. self.session.rollback()
  494. log.exception(f"Error during reset: {e}")
  495. raise
  496. def close(self) -> None:
  497. pass
  498. def has_collection(self, collection_name: str) -> bool:
  499. try:
  500. exists = (
  501. self.session.query(DocumentChunk)
  502. .filter(DocumentChunk.collection_name == collection_name)
  503. .first()
  504. is not None
  505. )
  506. return exists
  507. except Exception as e:
  508. log.exception(f"Error checking collection existence: {e}")
  509. return False
  510. def delete_collection(self, collection_name: str) -> None:
  511. self.delete(collection_name)
  512. log.info(f"Collection '{collection_name}' deleted.")