123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813 |
- import logging
- import os
- from typing import Optional, Union
- import requests
- import hashlib
- from concurrent.futures import ThreadPoolExecutor
- from huggingface_hub import snapshot_download
- from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
- from langchain_community.retrievers import BM25Retriever
- from langchain_core.documents import Document
- from open_webui.config import VECTOR_DB
- from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
- from open_webui.models.users import UserModel
- from open_webui.models.files import Files
- from open_webui.retrieval.vector.main import GetResult
- from open_webui.env import (
- SRC_LOG_LEVELS,
- OFFLINE_MODE,
- ENABLE_FORWARD_USER_INFO_HEADERS,
- )
- from open_webui.config import (
- RAG_EMBEDDING_QUERY_PREFIX,
- RAG_EMBEDDING_CONTENT_PREFIX,
- RAG_EMBEDDING_PREFIX_FIELD_NAME,
- )
- log = logging.getLogger(__name__)
- log.setLevel(SRC_LOG_LEVELS["RAG"])
- from typing import Any
- from langchain_core.callbacks import CallbackManagerForRetrieverRun
- from langchain_core.retrievers import BaseRetriever
- class VectorSearchRetriever(BaseRetriever):
- collection_name: Any
- embedding_function: Any
- top_k: int
- def _get_relevant_documents(
- self,
- query: str,
- *,
- run_manager: CallbackManagerForRetrieverRun,
- ) -> list[Document]:
- result = VECTOR_DB_CLIENT.search(
- collection_name=self.collection_name,
- vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],
- limit=self.top_k,
- )
- ids = result.ids[0]
- metadatas = result.metadatas[0]
- documents = result.documents[0]
- results = []
- for idx in range(len(ids)):
- results.append(
- Document(
- metadata=metadatas[idx],
- page_content=documents[idx],
- )
- )
- return results
- def query_doc(
- collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
- ):
- try:
- log.debug(f"query_doc:doc {collection_name}")
- result = VECTOR_DB_CLIENT.search(
- collection_name=collection_name,
- vectors=[query_embedding],
- limit=k,
- )
- if result:
- log.info(f"query_doc:result {result.ids} {result.metadatas}")
- return result
- except Exception as e:
- log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
- raise e
- def get_doc(collection_name: str, user: UserModel = None):
- try:
- log.debug(f"get_doc:doc {collection_name}")
- result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
- if result:
- log.info(f"query_doc:result {result.ids} {result.metadatas}")
- return result
- except Exception as e:
- log.exception(f"Error getting doc {collection_name}: {e}")
- raise e
- def query_doc_with_hybrid_search(
- collection_name: str,
- collection_result: GetResult,
- query: str,
- embedding_function,
- k: int,
- reranking_function,
- k_reranker: int,
- r: float,
- ) -> dict:
- try:
- log.debug(f"query_doc_with_hybrid_search:doc {collection_name}")
- bm25_retriever = BM25Retriever.from_texts(
- texts=collection_result.documents[0],
- metadatas=collection_result.metadatas[0],
- )
- bm25_retriever.k = k
- vector_search_retriever = VectorSearchRetriever(
- collection_name=collection_name,
- embedding_function=embedding_function,
- top_k=k,
- )
- ensemble_retriever = EnsembleRetriever(
- retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
- )
- compressor = RerankCompressor(
- embedding_function=embedding_function,
- top_n=k_reranker,
- reranking_function=reranking_function,
- r_score=r,
- )
- compression_retriever = ContextualCompressionRetriever(
- base_compressor=compressor, base_retriever=ensemble_retriever
- )
- result = compression_retriever.invoke(query)
- distances = [d.metadata.get("score") for d in result]
- documents = [d.page_content for d in result]
- metadatas = [d.metadata for d in result]
- # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
- if k < k_reranker:
- sorted_items = sorted(
- zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
- )
- sorted_items = sorted_items[:k]
- distances, documents, metadatas = map(list, zip(*sorted_items))
- result = {
- "distances": [distances],
- "documents": [documents],
- "metadatas": [metadatas],
- }
- log.info(
- "query_doc_with_hybrid_search:result "
- + f'{result["metadatas"]} {result["distances"]}'
- )
- return result
- except Exception as e:
- log.exception(f"Error querying doc {collection_name} with hybrid search: {e}")
- raise e
- def merge_get_results(get_results: list[dict]) -> dict:
- # Initialize lists to store combined data
- combined_documents = []
- combined_metadatas = []
- combined_ids = []
- for data in get_results:
- combined_documents.extend(data["documents"][0])
- combined_metadatas.extend(data["metadatas"][0])
- combined_ids.extend(data["ids"][0])
- # Create the output dictionary
- result = {
- "documents": [combined_documents],
- "metadatas": [combined_metadatas],
- "ids": [combined_ids],
- }
- return result
- def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
- # Initialize lists to store combined data
- combined = dict() # To store documents with unique document hashes
- for data in query_results:
- distances = data["distances"][0]
- documents = data["documents"][0]
- metadatas = data["metadatas"][0]
- for distance, document, metadata in zip(distances, documents, metadatas):
- if isinstance(document, str):
- doc_hash = hashlib.md5(
- document.encode()
- ).hexdigest() # Compute a hash for uniqueness
- if doc_hash not in combined.keys():
- combined[doc_hash] = (distance, document, metadata)
- continue # if doc is new, no further comparison is needed
- # if doc is alredy in, but new distance is better, update
- if distance > combined[doc_hash][0]:
- combined[doc_hash] = (distance, document, metadata)
- combined = list(combined.values())
- # Sort the list based on distances
- combined.sort(key=lambda x: x[0], reverse=True)
- # Slice to keep only the top k elements
- sorted_distances, sorted_documents, sorted_metadatas = (
- zip(*combined[:k]) if combined else ([], [], [])
- )
- # Create and return the output dictionary
- return {
- "distances": [list(sorted_distances)],
- "documents": [list(sorted_documents)],
- "metadatas": [list(sorted_metadatas)],
- }
- def get_all_items_from_collections(collection_names: list[str]) -> dict:
- results = []
- for collection_name in collection_names:
- if collection_name:
- try:
- result = get_doc(collection_name=collection_name)
- if result is not None:
- results.append(result.model_dump())
- except Exception as e:
- log.exception(f"Error when querying the collection: {e}")
- else:
- pass
- return merge_get_results(results)
- def query_collection(
- collection_names: list[str],
- queries: list[str],
- embedding_function,
- k: int,
- ) -> dict:
- results = []
- for query in queries:
- log.debug(f"query_collection:query {query}")
- query_embedding = embedding_function(query, prefix=RAG_EMBEDDING_QUERY_PREFIX)
- for collection_name in collection_names:
- if collection_name:
- try:
- result = query_doc(
- collection_name=collection_name,
- k=k,
- query_embedding=query_embedding,
- )
- if result is not None:
- results.append(result.model_dump())
- except Exception as e:
- log.exception(f"Error when querying the collection: {e}")
- else:
- pass
- return merge_and_sort_query_results(results, k=k)
- def query_collection_with_hybrid_search(
- collection_names: list[str],
- queries: list[str],
- embedding_function,
- k: int,
- reranking_function,
- k_reranker: int,
- r: float,
- ) -> dict:
- results = []
- error = False
- # Fetch collection data once per collection sequentially
- # Avoid fetching the same data multiple times later
- collection_results = {}
- for collection_name in collection_names:
- try:
- log.debug(
- f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}"
- )
- collection_results[collection_name] = VECTOR_DB_CLIENT.get(
- collection_name=collection_name
- )
- except Exception as e:
- log.exception(f"Failed to fetch collection {collection_name}: {e}")
- collection_results[collection_name] = None
- log.info(
- f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
- )
- def process_query(collection_name, query):
- try:
- result = query_doc_with_hybrid_search(
- collection_name=collection_name,
- collection_result=collection_results[collection_name],
- query=query,
- embedding_function=embedding_function,
- k=k,
- reranking_function=reranking_function,
- k_reranker=k_reranker,
- r=r,
- )
- return result, None
- except Exception as e:
- log.exception(f"Error when querying the collection with hybrid_search: {e}")
- return None, e
- # Prepare tasks for all collections and queries
- # Avoid running any tasks for collections that failed to fetch data (have assigned None)
- tasks = [
- (cn, q)
- for cn in collection_names
- if collection_results[cn] is not None
- for q in queries
- ]
- with ThreadPoolExecutor() as executor:
- future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]
- task_results = [future.result() for future in future_results]
- for result, err in task_results:
- if err is not None:
- error = True
- elif result is not None:
- results.append(result)
- if error and not results:
- raise Exception(
- "Hybrid search failed for all collections. Using Non-hybrid search as fallback."
- )
- return merge_and_sort_query_results(results, k=k)
- def get_embedding_function(
- embedding_engine,
- embedding_model,
- embedding_function,
- url,
- key,
- embedding_batch_size,
- ):
- if embedding_engine == "":
- return lambda query, prefix=None, user=None: embedding_function.encode(
- query, **({"prompt": prefix} if prefix else {})
- ).tolist()
- elif embedding_engine in ["ollama", "openai"]:
- func = lambda query, prefix=None, user=None: generate_embeddings(
- engine=embedding_engine,
- model=embedding_model,
- text=query,
- prefix=prefix,
- url=url,
- key=key,
- user=user,
- )
- def generate_multiple(query, prefix, user, func):
- if isinstance(query, list):
- embeddings = []
- for i in range(0, len(query), embedding_batch_size):
- embeddings.extend(
- func(
- query[i : i + embedding_batch_size],
- prefix=prefix,
- user=user,
- )
- )
- return embeddings
- else:
- return func(query, prefix, user)
- return lambda query, prefix=None, user=None: generate_multiple(
- query, prefix, user, func
- )
- else:
- raise ValueError(f"Unknown embedding engine: {embedding_engine}")
- def get_sources_from_files(
- request,
- files,
- queries,
- embedding_function,
- k,
- reranking_function,
- k_reranker,
- r,
- hybrid_search,
- full_context=False,
- ):
- log.debug(
- f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
- )
- extracted_collections = []
- relevant_contexts = []
- for file in files:
- context = None
- if file.get("docs"):
- # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
- context = {
- "documents": [[doc.get("content") for doc in file.get("docs")]],
- "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
- }
- elif file.get("context") == "full":
- # Manual Full Mode Toggle
- context = {
- "documents": [[file.get("file").get("data", {}).get("content")]],
- "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
- }
- elif (
- file.get("type") != "web_search"
- and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
- ):
- # BYPASS_EMBEDDING_AND_RETRIEVAL
- if file.get("type") == "collection":
- file_ids = file.get("data", {}).get("file_ids", [])
- documents = []
- metadatas = []
- for file_id in file_ids:
- file_object = Files.get_file_by_id(file_id)
- if file_object:
- documents.append(file_object.data.get("content", ""))
- metadatas.append(
- {
- "file_id": file_id,
- "name": file_object.filename,
- "source": file_object.filename,
- }
- )
- context = {
- "documents": [documents],
- "metadatas": [metadatas],
- }
- elif file.get("id"):
- file_object = Files.get_file_by_id(file.get("id"))
- if file_object:
- context = {
- "documents": [[file_object.data.get("content", "")]],
- "metadatas": [
- [
- {
- "file_id": file.get("id"),
- "name": file_object.filename,
- "source": file_object.filename,
- }
- ]
- ],
- }
- elif file.get("file").get("data"):
- context = {
- "documents": [[file.get("file").get("data", {}).get("content")]],
- "metadatas": [
- [file.get("file").get("data", {}).get("metadata", {})]
- ],
- }
- else:
- collection_names = []
- if file.get("type") == "collection":
- if file.get("legacy"):
- collection_names = file.get("collection_names", [])
- else:
- collection_names.append(file["id"])
- elif file.get("collection_name"):
- collection_names.append(file["collection_name"])
- elif file.get("id"):
- if file.get("legacy"):
- collection_names.append(f"{file['id']}")
- else:
- collection_names.append(f"file-{file['id']}")
- collection_names = set(collection_names).difference(extracted_collections)
- if not collection_names:
- log.debug(f"skipping {file} as it has already been extracted")
- continue
- if full_context:
- try:
- context = get_all_items_from_collections(collection_names)
- except Exception as e:
- log.exception(e)
- else:
- try:
- context = None
- if file.get("type") == "text":
- context = file["content"]
- else:
- if hybrid_search:
- try:
- context = query_collection_with_hybrid_search(
- collection_names=collection_names,
- queries=queries,
- embedding_function=embedding_function,
- k=k,
- reranking_function=reranking_function,
- k_reranker=k_reranker,
- r=r,
- )
- except Exception as e:
- log.debug(
- "Error when using hybrid search, using"
- " non hybrid search as fallback."
- )
- if (not hybrid_search) or (context is None):
- context = query_collection(
- collection_names=collection_names,
- queries=queries,
- embedding_function=embedding_function,
- k=k,
- )
- except Exception as e:
- log.exception(e)
- extracted_collections.extend(collection_names)
- if context:
- if "data" in file:
- del file["data"]
- relevant_contexts.append({**context, "file": file})
- sources = []
- for context in relevant_contexts:
- try:
- if "documents" in context:
- if "metadatas" in context:
- source = {
- "source": context["file"],
- "document": context["documents"][0],
- "metadata": context["metadatas"][0],
- }
- if "distances" in context and context["distances"]:
- source["distances"] = context["distances"][0]
- sources.append(source)
- except Exception as e:
- log.exception(e)
- return sources
- def get_model_path(model: str, update_model: bool = False):
- # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
- cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
- local_files_only = not update_model
- if OFFLINE_MODE:
- local_files_only = True
- snapshot_kwargs = {
- "cache_dir": cache_dir,
- "local_files_only": local_files_only,
- }
- log.debug(f"model: {model}")
- log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
- # Inspiration from upstream sentence_transformers
- if (
- os.path.exists(model)
- or ("\\" in model or model.count("/") > 1)
- and local_files_only
- ):
- # If fully qualified path exists, return input, else set repo_id
- return model
- elif "/" not in model:
- # Set valid repo_id for model short-name
- model = "sentence-transformers" + "/" + model
- snapshot_kwargs["repo_id"] = model
- # Attempt to query the huggingface_hub library to determine the local path and/or to update
- try:
- model_repo_path = snapshot_download(**snapshot_kwargs)
- log.debug(f"model_repo_path: {model_repo_path}")
- return model_repo_path
- except Exception as e:
- log.exception(f"Cannot determine model snapshot path: {e}")
- return model
- def generate_openai_batch_embeddings(
- model: str,
- texts: list[str],
- url: str = "https://api.openai.com/v1",
- key: str = "",
- prefix: str = None,
- user: UserModel = None,
- ) -> Optional[list[list[float]]]:
- try:
- log.debug(
- f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
- )
- json_data = {"input": texts, "model": model}
- if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
- json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
- r = requests.post(
- f"{url}/embeddings",
- headers={
- "Content-Type": "application/json",
- "Authorization": f"Bearer {key}",
- **(
- {
- "X-OpenWebUI-User-Name": user.name,
- "X-OpenWebUI-User-Id": user.id,
- "X-OpenWebUI-User-Email": user.email,
- "X-OpenWebUI-User-Role": user.role,
- }
- if ENABLE_FORWARD_USER_INFO_HEADERS and user
- else {}
- ),
- },
- json=json_data,
- )
- r.raise_for_status()
- data = r.json()
- if "data" in data:
- return [elem["embedding"] for elem in data["data"]]
- else:
- raise "Something went wrong :/"
- except Exception as e:
- log.exception(f"Error generating openai batch embeddings: {e}")
- return None
- def generate_ollama_batch_embeddings(
- model: str,
- texts: list[str],
- url: str,
- key: str = "",
- prefix: str = None,
- user: UserModel = None,
- ) -> Optional[list[list[float]]]:
- try:
- log.debug(
- f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
- )
- json_data = {"input": texts, "model": model}
- if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
- json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
- r = requests.post(
- f"{url}/api/embed",
- headers={
- "Content-Type": "application/json",
- "Authorization": f"Bearer {key}",
- **(
- {
- "X-OpenWebUI-User-Name": user.name,
- "X-OpenWebUI-User-Id": user.id,
- "X-OpenWebUI-User-Email": user.email,
- "X-OpenWebUI-User-Role": user.role,
- }
- if ENABLE_FORWARD_USER_INFO_HEADERS
- else {}
- ),
- },
- json=json_data,
- )
- r.raise_for_status()
- data = r.json()
- if "embeddings" in data:
- return data["embeddings"]
- else:
- raise "Something went wrong :/"
- except Exception as e:
- log.exception(f"Error generating ollama batch embeddings: {e}")
- return None
- def generate_embeddings(
- engine: str,
- model: str,
- text: Union[str, list[str]],
- prefix: Union[str, None] = None,
- **kwargs,
- ):
- url = kwargs.get("url", "")
- key = kwargs.get("key", "")
- user = kwargs.get("user")
- if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
- if isinstance(text, list):
- text = [f"{prefix}{text_element}" for text_element in text]
- else:
- text = f"{prefix}{text}"
- if engine == "ollama":
- if isinstance(text, list):
- embeddings = generate_ollama_batch_embeddings(
- **{
- "model": model,
- "texts": text,
- "url": url,
- "key": key,
- "prefix": prefix,
- "user": user,
- }
- )
- else:
- embeddings = generate_ollama_batch_embeddings(
- **{
- "model": model,
- "texts": [text],
- "url": url,
- "key": key,
- "prefix": prefix,
- "user": user,
- }
- )
- return embeddings[0] if isinstance(text, str) else embeddings
- elif engine == "openai":
- if isinstance(text, list):
- embeddings = generate_openai_batch_embeddings(
- model, text, url, key, prefix, user
- )
- else:
- embeddings = generate_openai_batch_embeddings(
- model, [text], url, key, prefix, user
- )
- return embeddings[0] if isinstance(text, str) else embeddings
- import operator
- from typing import Optional, Sequence
- from langchain_core.callbacks import Callbacks
- from langchain_core.documents import BaseDocumentCompressor, Document
- class RerankCompressor(BaseDocumentCompressor):
- embedding_function: Any
- top_n: int
- reranking_function: Any
- r_score: float
- class Config:
- extra = "forbid"
- arbitrary_types_allowed = True
- def compress_documents(
- self,
- documents: Sequence[Document],
- query: str,
- callbacks: Optional[Callbacks] = None,
- ) -> Sequence[Document]:
- reranking = self.reranking_function is not None
- if reranking:
- scores = self.reranking_function.predict(
- [(query, doc.page_content) for doc in documents]
- )
- else:
- from sentence_transformers import util
- query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
- document_embedding = self.embedding_function(
- [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
- )
- scores = util.cos_sim(query_embedding, document_embedding)[0]
- docs_with_scores = list(zip(documents, scores.tolist()))
- if self.r_score:
- docs_with_scores = [
- (d, s) for d, s in docs_with_scores if s >= self.r_score
- ]
- result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
- final_results = []
- for doc, doc_score in result[: self.top_n]:
- metadata = doc.metadata
- metadata["score"] = doc_score
- doc = Document(
- page_content=doc.page_content,
- metadata=metadata,
- )
- final_results.append(doc)
- return final_results
|