utils.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. import os
  2. import logging
  3. import requests
  4. from typing import List
  5. from apps.ollama.main import (
  6. generate_ollama_embeddings,
  7. GenerateEmbeddingsForm,
  8. )
  9. from huggingface_hub import snapshot_download
  10. from langchain_core.documents import Document
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain.retrievers import (
  13. ContextualCompressionRetriever,
  14. EnsembleRetriever,
  15. )
  16. from sentence_transformers import CrossEncoder
  17. from typing import Optional
  18. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  19. log = logging.getLogger(__name__)
  20. log.setLevel(SRC_LOG_LEVELS["RAG"])
  21. def query_embeddings_doc(
  22. collection_name: str,
  23. query: str,
  24. embeddings_function,
  25. reranking_function,
  26. k: int,
  27. r: Optional[float] = None,
  28. hybrid: Optional[bool] = False,
  29. ):
  30. try:
  31. if hybrid:
  32. # if you use docker use the model from the environment variable
  33. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  34. documents = collection.get() # get all documents
  35. bm25_retriever = BM25Retriever.from_texts(
  36. texts=documents.get("documents"),
  37. metadatas=documents.get("metadatas"),
  38. )
  39. bm25_retriever.k = k
  40. chroma_retriever = ChromaRetriever(
  41. collection=collection,
  42. embeddings_function=embeddings_function,
  43. top_n=k,
  44. )
  45. ensemble_retriever = EnsembleRetriever(
  46. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  47. )
  48. compressor = RerankCompressor(
  49. embeddings_function=embeddings_function,
  50. reranking_function=reranking_function,
  51. r_score=r,
  52. top_n=k,
  53. )
  54. compression_retriever = ContextualCompressionRetriever(
  55. base_compressor=compressor, base_retriever=ensemble_retriever
  56. )
  57. result = compression_retriever.invoke(query)
  58. result = {
  59. "distances": [[d.metadata.get("score") for d in result]],
  60. "documents": [[d.page_content for d in result]],
  61. "metadatas": [[d.metadata for d in result]],
  62. }
  63. else:
  64. # if you use docker use the model from the environment variable
  65. query_embeddings = embeddings_function(query)
  66. log.info(f"query_embeddings_doc {query_embeddings}")
  67. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  68. result = collection.query(
  69. query_embeddings=[query_embeddings],
  70. n_results=k,
  71. )
  72. log.info(f"query_embeddings_doc:result {result}")
  73. return result
  74. except Exception as e:
  75. raise e
  76. def merge_and_sort_query_results(query_results, k):
  77. # Initialize lists to store combined data
  78. combined_distances = []
  79. combined_documents = []
  80. combined_metadatas = []
  81. for data in query_results:
  82. combined_distances.extend(data["distances"][0])
  83. combined_documents.extend(data["documents"][0])
  84. combined_metadatas.extend(data["metadatas"][0])
  85. # Create a list of tuples (distance, document, metadata)
  86. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  87. # Sort the list based on distances
  88. combined.sort(key=lambda x: x[0])
  89. # We don't have anything :-(
  90. if not combined:
  91. sorted_distances = []
  92. sorted_documents = []
  93. sorted_metadatas = []
  94. else:
  95. # Unzip the sorted list
  96. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  97. # Slicing the lists to include only k elements
  98. sorted_distances = list(sorted_distances)[:k]
  99. sorted_documents = list(sorted_documents)[:k]
  100. sorted_metadatas = list(sorted_metadatas)[:k]
  101. # Create the output dictionary
  102. result = {
  103. "distances": [sorted_distances],
  104. "documents": [sorted_documents],
  105. "metadatas": [sorted_metadatas],
  106. }
  107. return result
  108. def query_embeddings_collection(
  109. collection_names: List[str],
  110. query: str,
  111. k: int,
  112. r: float,
  113. embeddings_function,
  114. reranking_function,
  115. hybrid: bool,
  116. ):
  117. results = []
  118. for collection_name in collection_names:
  119. try:
  120. result = query_embeddings_doc(
  121. collection_name=collection_name,
  122. query=query,
  123. k=k,
  124. r=r,
  125. embeddings_function=embeddings_function,
  126. reranking_function=reranking_function,
  127. hybrid=hybrid,
  128. )
  129. results.append(result)
  130. except:
  131. pass
  132. return merge_and_sort_query_results(results, k)
  133. def rag_template(template: str, context: str, query: str):
  134. template = template.replace("[context]", context)
  135. template = template.replace("[query]", query)
  136. return template
  137. def query_embeddings_function(
  138. embedding_engine,
  139. embedding_model,
  140. embedding_function,
  141. openai_key,
  142. openai_url,
  143. ):
  144. if embedding_engine == "":
  145. return lambda query: embedding_function.encode(query).tolist()
  146. elif embedding_engine in ["ollama", "openai"]:
  147. if embedding_engine == "ollama":
  148. func = lambda query: generate_ollama_embeddings(
  149. GenerateEmbeddingsForm(
  150. **{
  151. "model": embedding_model,
  152. "prompt": query,
  153. }
  154. )
  155. )
  156. elif embedding_engine == "openai":
  157. func = lambda query: generate_openai_embeddings(
  158. model=embedding_model,
  159. text=query,
  160. key=openai_key,
  161. url=openai_url,
  162. )
  163. def generate_multiple(query, f):
  164. if isinstance(query, list):
  165. return [f(q) for q in query]
  166. else:
  167. return f(query)
  168. return lambda query: generate_multiple(query, func)
  169. def rag_messages(
  170. docs,
  171. messages,
  172. template,
  173. k,
  174. r,
  175. hybrid,
  176. embedding_engine,
  177. embedding_model,
  178. embedding_function,
  179. reranking_function,
  180. openai_key,
  181. openai_url,
  182. ):
  183. log.debug(
  184. f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
  185. )
  186. last_user_message_idx = None
  187. for i in range(len(messages) - 1, -1, -1):
  188. if messages[i]["role"] == "user":
  189. last_user_message_idx = i
  190. break
  191. user_message = messages[last_user_message_idx]
  192. if isinstance(user_message["content"], list):
  193. # Handle list content input
  194. content_type = "list"
  195. query = ""
  196. for content_item in user_message["content"]:
  197. if content_item["type"] == "text":
  198. query = content_item["text"]
  199. break
  200. elif isinstance(user_message["content"], str):
  201. # Handle text content input
  202. content_type = "text"
  203. query = user_message["content"]
  204. else:
  205. # Fallback in case the input does not match expected types
  206. content_type = None
  207. query = ""
  208. embeddings_function = query_embeddings_function(
  209. embedding_engine,
  210. embedding_model,
  211. embedding_function,
  212. openai_key,
  213. openai_url,
  214. )
  215. extracted_collections = []
  216. relevant_contexts = []
  217. for doc in docs:
  218. context = None
  219. collection = doc.get("collection_name")
  220. if collection:
  221. collection = [collection]
  222. else:
  223. collection = doc.get("collection_names", [])
  224. collection = set(collection).difference(extracted_collections)
  225. if not collection:
  226. log.debug(f"skipping {doc} as it has already been extracted")
  227. continue
  228. try:
  229. if doc["type"] == "text":
  230. context = doc["content"]
  231. elif doc["type"] == "collection":
  232. context = query_embeddings_collection(
  233. collection_names=doc["collection_names"],
  234. query=query,
  235. k=k,
  236. r=r,
  237. embeddings_function=embeddings_function,
  238. reranking_function=reranking_function,
  239. hybrid=hybrid,
  240. )
  241. else:
  242. context = query_embeddings_doc(
  243. collection_name=doc["collection_name"],
  244. query=query,
  245. k=k,
  246. r=r,
  247. embeddings_function=embeddings_function,
  248. reranking_function=reranking_function,
  249. hybrid=hybrid,
  250. )
  251. except Exception as e:
  252. log.exception(e)
  253. context = None
  254. if context:
  255. relevant_contexts.append(context)
  256. extracted_collections.extend(collection)
  257. context_string = ""
  258. for context in relevant_contexts:
  259. items = context["documents"][0]
  260. context_string += "\n\n".join(items)
  261. context_string = context_string.strip()
  262. ra_content = rag_template(
  263. template=template,
  264. context=context_string,
  265. query=query,
  266. )
  267. log.debug(f"ra_content: {ra_content}")
  268. if content_type == "list":
  269. new_content = []
  270. for content_item in user_message["content"]:
  271. if content_item["type"] == "text":
  272. # Update the text item's content with ra_content
  273. new_content.append({"type": "text", "text": ra_content})
  274. else:
  275. # Keep other types of content as they are
  276. new_content.append(content_item)
  277. new_user_message = {**user_message, "content": new_content}
  278. else:
  279. new_user_message = {
  280. **user_message,
  281. "content": ra_content,
  282. }
  283. messages[last_user_message_idx] = new_user_message
  284. return messages
  285. def get_model_path(model: str, update_model: bool = False):
  286. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  287. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  288. local_files_only = not update_model
  289. snapshot_kwargs = {
  290. "cache_dir": cache_dir,
  291. "local_files_only": local_files_only,
  292. }
  293. log.debug(f"model: {model}")
  294. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  295. # Inspiration from upstream sentence_transformers
  296. if (
  297. os.path.exists(model)
  298. or ("\\" in model or model.count("/") > 1)
  299. and local_files_only
  300. ):
  301. # If fully qualified path exists, return input, else set repo_id
  302. return model
  303. elif "/" not in model:
  304. # Set valid repo_id for model short-name
  305. model = "sentence-transformers" + "/" + model
  306. snapshot_kwargs["repo_id"] = model
  307. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  308. try:
  309. model_repo_path = snapshot_download(**snapshot_kwargs)
  310. log.debug(f"model_repo_path: {model_repo_path}")
  311. return model_repo_path
  312. except Exception as e:
  313. log.exception(f"Cannot determine model snapshot path: {e}")
  314. return model
  315. def generate_openai_embeddings(
  316. model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
  317. ):
  318. try:
  319. r = requests.post(
  320. f"{url}/embeddings",
  321. headers={
  322. "Content-Type": "application/json",
  323. "Authorization": f"Bearer {key}",
  324. },
  325. json={"input": text, "model": model},
  326. )
  327. r.raise_for_status()
  328. data = r.json()
  329. if "data" in data:
  330. return data["data"][0]["embedding"]
  331. else:
  332. raise "Something went wrong :/"
  333. except Exception as e:
  334. print(e)
  335. return None
  336. from typing import Any
  337. from langchain_core.retrievers import BaseRetriever
  338. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  339. class ChromaRetriever(BaseRetriever):
  340. collection: Any
  341. embeddings_function: Any
  342. top_n: int
  343. def _get_relevant_documents(
  344. self,
  345. query: str,
  346. *,
  347. run_manager: CallbackManagerForRetrieverRun,
  348. ) -> List[Document]:
  349. query_embeddings = self.embeddings_function(query)
  350. results = self.collection.query(
  351. query_embeddings=[query_embeddings],
  352. n_results=self.top_n,
  353. )
  354. ids = results["ids"][0]
  355. metadatas = results["metadatas"][0]
  356. documents = results["documents"][0]
  357. return [
  358. Document(
  359. metadata=metadatas[idx],
  360. page_content=documents[idx],
  361. )
  362. for idx in range(len(ids))
  363. ]
  364. import operator
  365. from typing import Optional, Sequence
  366. from langchain_core.documents import BaseDocumentCompressor, Document
  367. from langchain_core.callbacks import Callbacks
  368. from langchain_core.pydantic_v1 import Extra
  369. from sentence_transformers import util
  370. class RerankCompressor(BaseDocumentCompressor):
  371. embeddings_function: Any
  372. reranking_function: Any
  373. r_score: float
  374. top_n: int
  375. class Config:
  376. extra = Extra.forbid
  377. arbitrary_types_allowed = True
  378. def compress_documents(
  379. self,
  380. documents: Sequence[Document],
  381. query: str,
  382. callbacks: Optional[Callbacks] = None,
  383. ) -> Sequence[Document]:
  384. if self.reranking_function:
  385. scores = self.reranking_function.predict(
  386. [(query, doc.page_content) for doc in documents]
  387. )
  388. else:
  389. query_embedding = self.embeddings_function(query)
  390. document_embedding = self.embeddings_function(
  391. [doc.page_content for doc in documents]
  392. )
  393. scores = util.cos_sim(query_embedding, document_embedding)[0]
  394. docs_with_scores = list(zip(documents, scores.tolist()))
  395. if self.r_score:
  396. docs_with_scores = [
  397. (d, s) for d, s in docs_with_scores if s >= self.r_score
  398. ]
  399. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  400. final_results = []
  401. for doc, doc_score in result[: self.top_n]:
  402. metadata = doc.metadata
  403. metadata["score"] = doc_score
  404. doc = Document(
  405. page_content=doc.page_content,
  406. metadata=metadata,
  407. )
  408. final_results.append(doc)
  409. return final_results