utils.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. import hashlib
  6. from concurrent.futures import ThreadPoolExecutor
  7. from huggingface_hub import snapshot_download
  8. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain_core.documents import Document
  11. from open_webui.config import VECTOR_DB
  12. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  13. from open_webui.models.users import UserModel
  14. from open_webui.models.files import Files
  15. from open_webui.retrieval.vector.main import GetResult
  16. from open_webui.env import (
  17. SRC_LOG_LEVELS,
  18. OFFLINE_MODE,
  19. ENABLE_FORWARD_USER_INFO_HEADERS,
  20. )
  21. from open_webui.config import (
  22. RAG_EMBEDDING_QUERY_PREFIX,
  23. RAG_EMBEDDING_CONTENT_PREFIX,
  24. RAG_EMBEDDING_PREFIX_FIELD_NAME,
  25. )
  26. log = logging.getLogger(__name__)
  27. log.setLevel(SRC_LOG_LEVELS["RAG"])
  28. from typing import Any
  29. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  30. from langchain_core.retrievers import BaseRetriever
  31. class VectorSearchRetriever(BaseRetriever):
  32. collection_name: Any
  33. embedding_function: Any
  34. top_k: int
  35. def _get_relevant_documents(
  36. self,
  37. query: str,
  38. *,
  39. run_manager: CallbackManagerForRetrieverRun,
  40. ) -> list[Document]:
  41. result = VECTOR_DB_CLIENT.search(
  42. collection_name=self.collection_name,
  43. vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],
  44. limit=self.top_k,
  45. )
  46. ids = result.ids[0]
  47. metadatas = result.metadatas[0]
  48. documents = result.documents[0]
  49. results = []
  50. for idx in range(len(ids)):
  51. results.append(
  52. Document(
  53. metadata=metadatas[idx],
  54. page_content=documents[idx],
  55. )
  56. )
  57. return results
  58. def query_doc(
  59. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  60. ):
  61. try:
  62. result = VECTOR_DB_CLIENT.search(
  63. collection_name=collection_name,
  64. vectors=[query_embedding],
  65. limit=k,
  66. )
  67. if result:
  68. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  69. return result
  70. except Exception as e:
  71. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  72. raise e
  73. def get_doc(collection_name: str, user: UserModel = None):
  74. try:
  75. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  76. if result:
  77. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  78. return result
  79. except Exception as e:
  80. log.exception(f"Error getting doc {collection_name}: {e}")
  81. raise e
  82. def query_doc_with_hybrid_search(
  83. collection_name: str,
  84. collection_result: GetResult,
  85. query: str,
  86. embedding_function,
  87. k: int,
  88. reranking_function,
  89. k_reranker: int,
  90. r: float,
  91. ) -> dict:
  92. try:
  93. bm25_retriever = BM25Retriever.from_texts(
  94. texts=collection_result.documents[0],
  95. metadatas=collection_result.metadatas[0],
  96. )
  97. bm25_retriever.k = k
  98. vector_search_retriever = VectorSearchRetriever(
  99. collection_name=collection_name,
  100. embedding_function=embedding_function,
  101. top_k=k,
  102. )
  103. ensemble_retriever = EnsembleRetriever(
  104. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  105. )
  106. compressor = RerankCompressor(
  107. embedding_function=embedding_function,
  108. top_n=k_reranker,
  109. reranking_function=reranking_function,
  110. r_score=r,
  111. )
  112. compression_retriever = ContextualCompressionRetriever(
  113. base_compressor=compressor, base_retriever=ensemble_retriever
  114. )
  115. result = compression_retriever.invoke(query)
  116. distances = [d.metadata.get("score") for d in result]
  117. documents = [d.page_content for d in result]
  118. metadatas = [d.metadata for d in result]
  119. # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
  120. if k < k_reranker:
  121. sorted_items = sorted(
  122. zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
  123. )
  124. sorted_items = sorted_items[:k]
  125. distances, documents, metadatas = map(list, zip(*sorted_items))
  126. result = {
  127. "distances": [distances],
  128. "documents": [documents],
  129. "metadatas": [metadatas],
  130. }
  131. log.info(
  132. "query_doc_with_hybrid_search:result "
  133. + f'{result["metadatas"]} {result["distances"]}'
  134. )
  135. return result
  136. except Exception as e:
  137. raise e
  138. def merge_get_results(get_results: list[dict]) -> dict:
  139. # Initialize lists to store combined data
  140. combined_documents = []
  141. combined_metadatas = []
  142. combined_ids = []
  143. for data in get_results:
  144. combined_documents.extend(data["documents"][0])
  145. combined_metadatas.extend(data["metadatas"][0])
  146. combined_ids.extend(data["ids"][0])
  147. # Create the output dictionary
  148. result = {
  149. "documents": [combined_documents],
  150. "metadatas": [combined_metadatas],
  151. "ids": [combined_ids],
  152. }
  153. return result
  154. def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
  155. # Initialize lists to store combined data
  156. combined = dict() # To store documents with unique document hashes
  157. for data in query_results:
  158. distances = data["distances"][0]
  159. documents = data["documents"][0]
  160. metadatas = data["metadatas"][0]
  161. for distance, document, metadata in zip(distances, documents, metadatas):
  162. if isinstance(document, str):
  163. doc_hash = hashlib.md5(
  164. document.encode()
  165. ).hexdigest() # Compute a hash for uniqueness
  166. if doc_hash not in combined.keys():
  167. combined[doc_hash] = (distance, document, metadata)
  168. continue # if doc is new, no further comparison is needed
  169. # if doc is alredy in, but new distance is better, update
  170. if distance > combined[doc_hash][0]:
  171. combined[doc_hash] = (distance, document, metadata)
  172. combined = list(combined.values())
  173. # Sort the list based on distances
  174. combined.sort(key=lambda x: x[0], reverse=True)
  175. # Slice to keep only the top k elements
  176. sorted_distances, sorted_documents, sorted_metadatas = (
  177. zip(*combined[:k]) if combined else ([], [], [])
  178. )
  179. # Create and return the output dictionary
  180. return {
  181. "distances": [list(sorted_distances)],
  182. "documents": [list(sorted_documents)],
  183. "metadatas": [list(sorted_metadatas)],
  184. }
  185. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  186. results = []
  187. for collection_name in collection_names:
  188. if collection_name:
  189. try:
  190. result = get_doc(collection_name=collection_name)
  191. if result is not None:
  192. results.append(result.model_dump())
  193. except Exception as e:
  194. log.exception(f"Error when querying the collection: {e}")
  195. else:
  196. pass
  197. return merge_get_results(results)
  198. def query_collection(
  199. collection_names: list[str],
  200. queries: list[str],
  201. embedding_function,
  202. k: int,
  203. ) -> dict:
  204. results = []
  205. for query in queries:
  206. query_embedding = embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  207. for collection_name in collection_names:
  208. if collection_name:
  209. try:
  210. result = query_doc(
  211. collection_name=collection_name,
  212. k=k,
  213. query_embedding=query_embedding,
  214. )
  215. if result is not None:
  216. results.append(result.model_dump())
  217. except Exception as e:
  218. log.exception(f"Error when querying the collection: {e}")
  219. else:
  220. pass
  221. return merge_and_sort_query_results(results, k=k)
  222. def query_collection_with_hybrid_search(
  223. collection_names: list[str],
  224. queries: list[str],
  225. embedding_function,
  226. k: int,
  227. reranking_function,
  228. k_reranker: int,
  229. r: float,
  230. ) -> dict:
  231. results = []
  232. error = False
  233. # Fetch collection data once per collection sequentially
  234. # Avoid fetching the same data multiple times later
  235. collection_results = {}
  236. for collection_name in collection_names:
  237. try:
  238. collection_results[collection_name] = VECTOR_DB_CLIENT.get(
  239. collection_name=collection_name
  240. )
  241. except Exception as e:
  242. log.exception(f"Failed to fetch collection {collection_name}: {e}")
  243. collection_results[collection_name] = None
  244. log.info(f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections...")
  245. def process_query(collection_name, query):
  246. try:
  247. result = query_doc_with_hybrid_search(
  248. collection_name=collection_name,
  249. collection_result=collection_results[collection_name],
  250. query=query,
  251. embedding_function=embedding_function,
  252. k=k,
  253. reranking_function=reranking_function,
  254. k_reranker=k_reranker,
  255. r=r,
  256. )
  257. return result, None
  258. except Exception as e:
  259. log.exception(f"Error when querying the collection with hybrid_search: {e}")
  260. return None, e
  261. tasks = [(collection_name, query) for collection_name in collection_names for query in queries]
  262. with ThreadPoolExecutor() as executor:
  263. future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]
  264. task_results = [future.result() for future in future_results]
  265. for result, err in task_results:
  266. if err is not None:
  267. error = True
  268. elif result is not None:
  269. results.append(result)
  270. if error and not results:
  271. raise Exception("Hybrid search failed for all collections. Using Non-hybrid search as fallback.")
  272. return merge_and_sort_query_results(results, k=k)
  273. def get_embedding_function(
  274. embedding_engine,
  275. embedding_model,
  276. embedding_function,
  277. url,
  278. key,
  279. embedding_batch_size,
  280. ):
  281. if embedding_engine == "":
  282. return lambda query, prefix, user=None: embedding_function.encode(
  283. query, prompt=prefix if prefix else None
  284. ).tolist()
  285. elif embedding_engine in ["ollama", "openai"]:
  286. func = lambda query, prefix, user=None: generate_embeddings(
  287. engine=embedding_engine,
  288. model=embedding_model,
  289. text=query,
  290. prefix=prefix,
  291. url=url,
  292. key=key,
  293. user=user,
  294. )
  295. def generate_multiple(query, prefix, user, func):
  296. if isinstance(query, list):
  297. embeddings = []
  298. for i in range(0, len(query), embedding_batch_size):
  299. embeddings.extend(
  300. func(
  301. query[i : i + embedding_batch_size],
  302. prefix=prefix,
  303. user=user,
  304. )
  305. )
  306. return embeddings
  307. else:
  308. return func(query, prefix, user)
  309. return lambda query, prefix, user=None: generate_multiple(
  310. query, prefix, user, func
  311. )
  312. else:
  313. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  314. def get_sources_from_files(
  315. request,
  316. files,
  317. queries,
  318. embedding_function,
  319. k,
  320. reranking_function,
  321. k_reranker,
  322. r,
  323. hybrid_search,
  324. full_context=False,
  325. ):
  326. log.debug(
  327. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  328. )
  329. extracted_collections = []
  330. relevant_contexts = []
  331. for file in files:
  332. context = None
  333. if file.get("docs"):
  334. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  335. context = {
  336. "documents": [[doc.get("content") for doc in file.get("docs")]],
  337. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  338. }
  339. elif file.get("context") == "full":
  340. # Manual Full Mode Toggle
  341. context = {
  342. "documents": [[file.get("file").get("data", {}).get("content")]],
  343. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  344. }
  345. elif (
  346. file.get("type") != "web_search"
  347. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  348. ):
  349. # BYPASS_EMBEDDING_AND_RETRIEVAL
  350. if file.get("type") == "collection":
  351. file_ids = file.get("data", {}).get("file_ids", [])
  352. documents = []
  353. metadatas = []
  354. for file_id in file_ids:
  355. file_object = Files.get_file_by_id(file_id)
  356. if file_object:
  357. documents.append(file_object.data.get("content", ""))
  358. metadatas.append(
  359. {
  360. "file_id": file_id,
  361. "name": file_object.filename,
  362. "source": file_object.filename,
  363. }
  364. )
  365. context = {
  366. "documents": [documents],
  367. "metadatas": [metadatas],
  368. }
  369. elif file.get("id"):
  370. file_object = Files.get_file_by_id(file.get("id"))
  371. if file_object:
  372. context = {
  373. "documents": [[file_object.data.get("content", "")]],
  374. "metadatas": [
  375. [
  376. {
  377. "file_id": file.get("id"),
  378. "name": file_object.filename,
  379. "source": file_object.filename,
  380. }
  381. ]
  382. ],
  383. }
  384. elif file.get("file").get("data"):
  385. context = {
  386. "documents": [[file.get("file").get("data", {}).get("content")]],
  387. "metadatas": [
  388. [file.get("file").get("data", {}).get("metadata", {})]
  389. ],
  390. }
  391. else:
  392. collection_names = []
  393. if file.get("type") == "collection":
  394. if file.get("legacy"):
  395. collection_names = file.get("collection_names", [])
  396. else:
  397. collection_names.append(file["id"])
  398. elif file.get("collection_name"):
  399. collection_names.append(file["collection_name"])
  400. elif file.get("id"):
  401. if file.get("legacy"):
  402. collection_names.append(f"{file['id']}")
  403. else:
  404. collection_names.append(f"file-{file['id']}")
  405. collection_names = set(collection_names).difference(extracted_collections)
  406. if not collection_names:
  407. log.debug(f"skipping {file} as it has already been extracted")
  408. continue
  409. if full_context:
  410. try:
  411. context = get_all_items_from_collections(collection_names)
  412. except Exception as e:
  413. log.exception(e)
  414. else:
  415. try:
  416. context = None
  417. if file.get("type") == "text":
  418. context = file["content"]
  419. else:
  420. if hybrid_search:
  421. try:
  422. context = query_collection_with_hybrid_search(
  423. collection_names=collection_names,
  424. queries=queries,
  425. embedding_function=embedding_function,
  426. k=k,
  427. reranking_function=reranking_function,
  428. k_reranker=k_reranker,
  429. r=r,
  430. )
  431. except Exception as e:
  432. log.debug(
  433. "Error when using hybrid search, using"
  434. " non hybrid search as fallback."
  435. )
  436. if (not hybrid_search) or (context is None):
  437. context = query_collection(
  438. collection_names=collection_names,
  439. queries=queries,
  440. embedding_function=embedding_function,
  441. k=k,
  442. )
  443. except Exception as e:
  444. log.exception(e)
  445. extracted_collections.extend(collection_names)
  446. if context:
  447. if "data" in file:
  448. del file["data"]
  449. relevant_contexts.append({**context, "file": file})
  450. sources = []
  451. for context in relevant_contexts:
  452. try:
  453. if "documents" in context:
  454. if "metadatas" in context:
  455. source = {
  456. "source": context["file"],
  457. "document": context["documents"][0],
  458. "metadata": context["metadatas"][0],
  459. }
  460. if "distances" in context and context["distances"]:
  461. source["distances"] = context["distances"][0]
  462. sources.append(source)
  463. except Exception as e:
  464. log.exception(e)
  465. return sources
  466. def get_model_path(model: str, update_model: bool = False):
  467. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  468. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  469. local_files_only = not update_model
  470. if OFFLINE_MODE:
  471. local_files_only = True
  472. snapshot_kwargs = {
  473. "cache_dir": cache_dir,
  474. "local_files_only": local_files_only,
  475. }
  476. log.debug(f"model: {model}")
  477. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  478. # Inspiration from upstream sentence_transformers
  479. if (
  480. os.path.exists(model)
  481. or ("\\" in model or model.count("/") > 1)
  482. and local_files_only
  483. ):
  484. # If fully qualified path exists, return input, else set repo_id
  485. return model
  486. elif "/" not in model:
  487. # Set valid repo_id for model short-name
  488. model = "sentence-transformers" + "/" + model
  489. snapshot_kwargs["repo_id"] = model
  490. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  491. try:
  492. model_repo_path = snapshot_download(**snapshot_kwargs)
  493. log.debug(f"model_repo_path: {model_repo_path}")
  494. return model_repo_path
  495. except Exception as e:
  496. log.exception(f"Cannot determine model snapshot path: {e}")
  497. return model
  498. def generate_openai_batch_embeddings(
  499. model: str,
  500. texts: list[str],
  501. url: str = "https://api.openai.com/v1",
  502. key: str = "",
  503. prefix: str = None,
  504. user: UserModel = None,
  505. ) -> Optional[list[list[float]]]:
  506. try:
  507. json_data = {"input": texts, "model": model}
  508. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  509. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  510. r = requests.post(
  511. f"{url}/embeddings",
  512. headers={
  513. "Content-Type": "application/json",
  514. "Authorization": f"Bearer {key}",
  515. **(
  516. {
  517. "X-OpenWebUI-User-Name": user.name,
  518. "X-OpenWebUI-User-Id": user.id,
  519. "X-OpenWebUI-User-Email": user.email,
  520. "X-OpenWebUI-User-Role": user.role,
  521. }
  522. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  523. else {}
  524. ),
  525. },
  526. json=json_data,
  527. )
  528. r.raise_for_status()
  529. data = r.json()
  530. if "data" in data:
  531. return [elem["embedding"] for elem in data["data"]]
  532. else:
  533. raise "Something went wrong :/"
  534. except Exception as e:
  535. log.exception(f"Error generating openai batch embeddings: {e}")
  536. return None
  537. def generate_ollama_batch_embeddings(
  538. model: str,
  539. texts: list[str],
  540. url: str,
  541. key: str = "",
  542. prefix: str = None,
  543. user: UserModel = None,
  544. ) -> Optional[list[list[float]]]:
  545. try:
  546. json_data = {"input": texts, "model": model}
  547. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  548. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  549. r = requests.post(
  550. f"{url}/api/embed",
  551. headers={
  552. "Content-Type": "application/json",
  553. "Authorization": f"Bearer {key}",
  554. **(
  555. {
  556. "X-OpenWebUI-User-Name": user.name,
  557. "X-OpenWebUI-User-Id": user.id,
  558. "X-OpenWebUI-User-Email": user.email,
  559. "X-OpenWebUI-User-Role": user.role,
  560. }
  561. if ENABLE_FORWARD_USER_INFO_HEADERS
  562. else {}
  563. ),
  564. },
  565. json=json_data,
  566. )
  567. r.raise_for_status()
  568. data = r.json()
  569. if "embeddings" in data:
  570. return data["embeddings"]
  571. else:
  572. raise "Something went wrong :/"
  573. except Exception as e:
  574. log.exception(f"Error generating ollama batch embeddings: {e}")
  575. return None
  576. def generate_embeddings(
  577. engine: str,
  578. model: str,
  579. text: Union[str, list[str]],
  580. prefix: Union[str, None] = None,
  581. **kwargs,
  582. ):
  583. url = kwargs.get("url", "")
  584. key = kwargs.get("key", "")
  585. user = kwargs.get("user")
  586. if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
  587. if isinstance(text, list):
  588. text = [f"{prefix}{text_element}" for text_element in text]
  589. else:
  590. text = f"{prefix}{text}"
  591. if engine == "ollama":
  592. if isinstance(text, list):
  593. embeddings = generate_ollama_batch_embeddings(
  594. **{
  595. "model": model,
  596. "texts": text,
  597. "url": url,
  598. "key": key,
  599. "prefix": prefix,
  600. "user": user,
  601. }
  602. )
  603. else:
  604. embeddings = generate_ollama_batch_embeddings(
  605. **{
  606. "model": model,
  607. "texts": [text],
  608. "url": url,
  609. "key": key,
  610. "prefix": prefix,
  611. "user": user,
  612. }
  613. )
  614. return embeddings[0] if isinstance(text, str) else embeddings
  615. elif engine == "openai":
  616. if isinstance(text, list):
  617. embeddings = generate_openai_batch_embeddings(
  618. model, text, url, key, prefix, user
  619. )
  620. else:
  621. embeddings = generate_openai_batch_embeddings(
  622. model, [text], url, key, prefix, user
  623. )
  624. return embeddings[0] if isinstance(text, str) else embeddings
  625. import operator
  626. from typing import Optional, Sequence
  627. from langchain_core.callbacks import Callbacks
  628. from langchain_core.documents import BaseDocumentCompressor, Document
  629. class RerankCompressor(BaseDocumentCompressor):
  630. embedding_function: Any
  631. top_n: int
  632. reranking_function: Any
  633. r_score: float
  634. class Config:
  635. extra = "forbid"
  636. arbitrary_types_allowed = True
  637. def compress_documents(
  638. self,
  639. documents: Sequence[Document],
  640. query: str,
  641. callbacks: Optional[Callbacks] = None,
  642. ) -> Sequence[Document]:
  643. reranking = self.reranking_function is not None
  644. if reranking:
  645. scores = self.reranking_function.predict(
  646. [(query, doc.page_content) for doc in documents]
  647. )
  648. else:
  649. from sentence_transformers import util
  650. query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  651. document_embedding = self.embedding_function(
  652. [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
  653. )
  654. scores = util.cos_sim(query_embedding, document_embedding)[0]
  655. docs_with_scores = list(zip(documents, scores.tolist()))
  656. if self.r_score:
  657. docs_with_scores = [
  658. (d, s) for d, s in docs_with_scores if s >= self.r_score
  659. ]
  660. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  661. final_results = []
  662. for doc, doc_score in result[: self.top_n]:
  663. metadata = doc.metadata
  664. metadata["score"] = doc_score
  665. doc = Document(
  666. page_content=doc.page_content,
  667. metadata=metadata,
  668. )
  669. final_results.append(doc)
  670. return final_results