1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132 |
- import hashlib
- import json
- import logging
- import os
- import uuid
- from functools import lru_cache
- from pathlib import Path
- from pydub import AudioSegment
- from pydub.silence import split_on_silence
- from concurrent.futures import ThreadPoolExecutor
- from typing import Optional
- from fnmatch import fnmatch
- import aiohttp
- import aiofiles
- import requests
- import mimetypes
- from fastapi import (
- Depends,
- FastAPI,
- File,
- Form,
- HTTPException,
- Request,
- UploadFile,
- status,
- APIRouter,
- )
- from fastapi.middleware.cors import CORSMiddleware
- from fastapi.responses import FileResponse
- from pydantic import BaseModel
- from open_webui.utils.auth import get_admin_user, get_verified_user
- from open_webui.config import (
- WHISPER_MODEL_AUTO_UPDATE,
- WHISPER_MODEL_DIR,
- CACHE_DIR,
- WHISPER_LANGUAGE,
- )
- from open_webui.constants import ERROR_MESSAGES
- from open_webui.env import (
- AIOHTTP_CLIENT_SESSION_SSL,
- AIOHTTP_CLIENT_TIMEOUT,
- ENV,
- SRC_LOG_LEVELS,
- DEVICE_TYPE,
- ENABLE_FORWARD_USER_INFO_HEADERS,
- )
- router = APIRouter()
- # Constants
- MAX_FILE_SIZE_MB = 20
- MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
- AZURE_MAX_FILE_SIZE_MB = 200
- AZURE_MAX_FILE_SIZE = AZURE_MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
- log = logging.getLogger(__name__)
- log.setLevel(SRC_LOG_LEVELS["AUDIO"])
- SPEECH_CACHE_DIR = CACHE_DIR / "audio" / "speech"
- SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)
- ##########################################
- #
- # Utility functions
- #
- ##########################################
- from pydub import AudioSegment
- from pydub.utils import mediainfo
- def is_audio_conversion_required(file_path):
- """
- Check if the given audio file needs conversion to mp3.
- """
- SUPPORTED_FORMATS = {"flac", "m4a", "mp3", "mp4", "mpeg", "wav", "webm"}
- if not os.path.isfile(file_path):
- log.error(f"File not found: {file_path}")
- return False
- try:
- info = mediainfo(file_path)
- codec_name = info.get("codec_name", "").lower()
- codec_type = info.get("codec_type", "").lower()
- codec_tag_string = info.get("codec_tag_string", "").lower()
- if codec_name == "aac" and codec_type == "audio" and codec_tag_string == "mp4a":
- # File is AAC/mp4a audio, recommend mp3 conversion
- return True
- # If the codec name is in the supported formats
- if codec_name in SUPPORTED_FORMATS:
- return False
- return True
- except Exception as e:
- log.error(f"Error getting audio format: {e}")
- return False
- def convert_audio_to_mp3(file_path):
- """Convert audio file to mp3 format."""
- try:
- output_path = os.path.splitext(file_path)[0] + ".mp3"
- audio = AudioSegment.from_file(file_path)
- audio.export(output_path, format="mp3")
- log.info(f"Converted {file_path} to {output_path}")
- return output_path
- except Exception as e:
- log.error(f"Error converting audio file: {e}")
- return None
- def set_faster_whisper_model(model: str, auto_update: bool = False):
- whisper_model = None
- if model:
- from faster_whisper import WhisperModel
- faster_whisper_kwargs = {
- "model_size_or_path": model,
- "device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu",
- "compute_type": "int8",
- "download_root": WHISPER_MODEL_DIR,
- "local_files_only": not auto_update,
- }
- try:
- whisper_model = WhisperModel(**faster_whisper_kwargs)
- except Exception:
- log.warning(
- "WhisperModel initialization failed, attempting download with local_files_only=False"
- )
- faster_whisper_kwargs["local_files_only"] = False
- whisper_model = WhisperModel(**faster_whisper_kwargs)
- return whisper_model
- ##########################################
- #
- # Audio API
- #
- ##########################################
- class TTSConfigForm(BaseModel):
- OPENAI_API_BASE_URL: str
- OPENAI_API_KEY: str
- API_KEY: str
- ENGINE: str
- MODEL: str
- VOICE: str
- SPLIT_ON: str
- AZURE_SPEECH_REGION: str
- AZURE_SPEECH_BASE_URL: str
- AZURE_SPEECH_OUTPUT_FORMAT: str
- class STTConfigForm(BaseModel):
- OPENAI_API_BASE_URL: str
- OPENAI_API_KEY: str
- ENGINE: str
- MODEL: str
- SUPPORTED_CONTENT_TYPES: list[str] = []
- WHISPER_MODEL: str
- DEEPGRAM_API_KEY: str
- AZURE_API_KEY: str
- AZURE_REGION: str
- AZURE_LOCALES: str
- AZURE_BASE_URL: str
- AZURE_MAX_SPEAKERS: str
- class AudioConfigUpdateForm(BaseModel):
- tts: TTSConfigForm
- stt: STTConfigForm
- @router.get("/config")
- async def get_audio_config(request: Request, user=Depends(get_admin_user)):
- return {
- "tts": {
- "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
- "API_KEY": request.app.state.config.TTS_API_KEY,
- "ENGINE": request.app.state.config.TTS_ENGINE,
- "MODEL": request.app.state.config.TTS_MODEL,
- "VOICE": request.app.state.config.TTS_VOICE,
- "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
- "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
- "AZURE_SPEECH_BASE_URL": request.app.state.config.TTS_AZURE_SPEECH_BASE_URL,
- "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
- },
- "stt": {
- "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
- "ENGINE": request.app.state.config.STT_ENGINE,
- "MODEL": request.app.state.config.STT_MODEL,
- "SUPPORTED_CONTENT_TYPES": request.app.state.config.STT_SUPPORTED_CONTENT_TYPES,
- "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
- "DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
- "AZURE_API_KEY": request.app.state.config.AUDIO_STT_AZURE_API_KEY,
- "AZURE_REGION": request.app.state.config.AUDIO_STT_AZURE_REGION,
- "AZURE_LOCALES": request.app.state.config.AUDIO_STT_AZURE_LOCALES,
- "AZURE_BASE_URL": request.app.state.config.AUDIO_STT_AZURE_BASE_URL,
- "AZURE_MAX_SPEAKERS": request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS,
- },
- }
- @router.post("/config/update")
- async def update_audio_config(
- request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user)
- ):
- request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL
- request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY
- request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY
- request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE
- request.app.state.config.TTS_MODEL = form_data.tts.MODEL
- request.app.state.config.TTS_VOICE = form_data.tts.VOICE
- request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON
- request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION
- request.app.state.config.TTS_AZURE_SPEECH_BASE_URL = (
- form_data.tts.AZURE_SPEECH_BASE_URL
- )
- request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = (
- form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT
- )
- request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL
- request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY
- request.app.state.config.STT_ENGINE = form_data.stt.ENGINE
- request.app.state.config.STT_MODEL = form_data.stt.MODEL
- request.app.state.config.STT_SUPPORTED_CONTENT_TYPES = (
- form_data.stt.SUPPORTED_CONTENT_TYPES
- )
- request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL
- request.app.state.config.DEEPGRAM_API_KEY = form_data.stt.DEEPGRAM_API_KEY
- request.app.state.config.AUDIO_STT_AZURE_API_KEY = form_data.stt.AZURE_API_KEY
- request.app.state.config.AUDIO_STT_AZURE_REGION = form_data.stt.AZURE_REGION
- request.app.state.config.AUDIO_STT_AZURE_LOCALES = form_data.stt.AZURE_LOCALES
- request.app.state.config.AUDIO_STT_AZURE_BASE_URL = form_data.stt.AZURE_BASE_URL
- request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS = (
- form_data.stt.AZURE_MAX_SPEAKERS
- )
- if request.app.state.config.STT_ENGINE == "":
- request.app.state.faster_whisper_model = set_faster_whisper_model(
- form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE
- )
- else:
- request.app.state.faster_whisper_model = None
- return {
- "tts": {
- "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
- "API_KEY": request.app.state.config.TTS_API_KEY,
- "ENGINE": request.app.state.config.TTS_ENGINE,
- "MODEL": request.app.state.config.TTS_MODEL,
- "VOICE": request.app.state.config.TTS_VOICE,
- "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
- "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
- "AZURE_SPEECH_BASE_URL": request.app.state.config.TTS_AZURE_SPEECH_BASE_URL,
- "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
- },
- "stt": {
- "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
- "ENGINE": request.app.state.config.STT_ENGINE,
- "MODEL": request.app.state.config.STT_MODEL,
- "SUPPORTED_CONTENT_TYPES": request.app.state.config.STT_SUPPORTED_CONTENT_TYPES,
- "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
- "DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
- "AZURE_API_KEY": request.app.state.config.AUDIO_STT_AZURE_API_KEY,
- "AZURE_REGION": request.app.state.config.AUDIO_STT_AZURE_REGION,
- "AZURE_LOCALES": request.app.state.config.AUDIO_STT_AZURE_LOCALES,
- "AZURE_BASE_URL": request.app.state.config.AUDIO_STT_AZURE_BASE_URL,
- "AZURE_MAX_SPEAKERS": request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS,
- },
- }
- def load_speech_pipeline(request):
- from transformers import pipeline
- from datasets import load_dataset
- if request.app.state.speech_synthesiser is None:
- request.app.state.speech_synthesiser = pipeline(
- "text-to-speech", "microsoft/speecht5_tts"
- )
- if request.app.state.speech_speaker_embeddings_dataset is None:
- request.app.state.speech_speaker_embeddings_dataset = load_dataset(
- "Matthijs/cmu-arctic-xvectors", split="validation"
- )
- @router.post("/speech")
- async def speech(request: Request, user=Depends(get_verified_user)):
- body = await request.body()
- name = hashlib.sha256(
- body
- + str(request.app.state.config.TTS_ENGINE).encode("utf-8")
- + str(request.app.state.config.TTS_MODEL).encode("utf-8")
- ).hexdigest()
- file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
- file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")
- # Check if the file already exists in the cache
- if file_path.is_file():
- return FileResponse(file_path)
- payload = None
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- if request.app.state.config.TTS_ENGINE == "openai":
- payload["model"] = request.app.state.config.TTS_MODEL
- try:
- timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
- async with aiohttp.ClientSession(
- timeout=timeout, trust_env=True
- ) as session:
- async with session.post(
- url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech",
- json=payload,
- headers={
- "Content-Type": "application/json",
- "Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}",
- **(
- {
- "X-OpenWebUI-User-Name": user.name,
- "X-OpenWebUI-User-Id": user.id,
- "X-OpenWebUI-User-Email": user.email,
- "X-OpenWebUI-User-Role": user.role,
- }
- if ENABLE_FORWARD_USER_INFO_HEADERS
- else {}
- ),
- },
- ssl=AIOHTTP_CLIENT_SESSION_SSL,
- ) as r:
- r.raise_for_status()
- async with aiofiles.open(file_path, "wb") as f:
- await f.write(await r.read())
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- detail = None
- try:
- if r.status != 200:
- res = await r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- elif request.app.state.config.TTS_ENGINE == "elevenlabs":
- voice_id = payload.get("voice", "")
- if voice_id not in get_available_voices(request):
- raise HTTPException(
- status_code=400,
- detail="Invalid voice id",
- )
- try:
- timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
- async with aiohttp.ClientSession(
- timeout=timeout, trust_env=True
- ) as session:
- async with session.post(
- f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
- json={
- "text": payload["input"],
- "model_id": request.app.state.config.TTS_MODEL,
- "voice_settings": {"stability": 0.5, "similarity_boost": 0.5},
- },
- headers={
- "Accept": "audio/mpeg",
- "Content-Type": "application/json",
- "xi-api-key": request.app.state.config.TTS_API_KEY,
- },
- ssl=AIOHTTP_CLIENT_SESSION_SSL,
- ) as r:
- r.raise_for_status()
- async with aiofiles.open(file_path, "wb") as f:
- await f.write(await r.read())
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- detail = None
- try:
- if r.status != 200:
- res = await r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- elif request.app.state.config.TTS_ENGINE == "azure":
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- region = request.app.state.config.TTS_AZURE_SPEECH_REGION or "eastus"
- base_url = request.app.state.config.TTS_AZURE_SPEECH_BASE_URL
- language = request.app.state.config.TTS_VOICE
- locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1])
- output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT
- try:
- data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}">
- <voice name="{language}">{payload["input"]}</voice>
- </speak>"""
- timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
- async with aiohttp.ClientSession(
- timeout=timeout, trust_env=True
- ) as session:
- async with session.post(
- (base_url or f"https://{region}.tts.speech.microsoft.com")
- + "/cognitiveservices/v1",
- headers={
- "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY,
- "Content-Type": "application/ssml+xml",
- "X-Microsoft-OutputFormat": output_format,
- },
- data=data,
- ssl=AIOHTTP_CLIENT_SESSION_SSL,
- ) as r:
- r.raise_for_status()
- async with aiofiles.open(file_path, "wb") as f:
- await f.write(await r.read())
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- detail = None
- try:
- if r.status != 200:
- res = await r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- elif request.app.state.config.TTS_ENGINE == "transformers":
- payload = None
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- import torch
- import soundfile as sf
- load_speech_pipeline(request)
- embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset
- speaker_index = 6799
- try:
- speaker_index = embeddings_dataset["filename"].index(
- request.app.state.config.TTS_MODEL
- )
- except Exception:
- pass
- speaker_embedding = torch.tensor(
- embeddings_dataset[speaker_index]["xvector"]
- ).unsqueeze(0)
- speech = request.app.state.speech_synthesiser(
- payload["input"],
- forward_params={"speaker_embeddings": speaker_embedding},
- )
- sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"])
- async with aiofiles.open(file_body_path, "w") as f:
- await f.write(json.dumps(payload))
- return FileResponse(file_path)
- def transcription_handler(request, file_path, metadata):
- filename = os.path.basename(file_path)
- file_dir = os.path.dirname(file_path)
- id = filename.split(".")[0]
- metadata = metadata or {}
- if request.app.state.config.STT_ENGINE == "":
- if request.app.state.faster_whisper_model is None:
- request.app.state.faster_whisper_model = set_faster_whisper_model(
- request.app.state.config.WHISPER_MODEL
- )
- model = request.app.state.faster_whisper_model
- segments, info = model.transcribe(
- file_path,
- beam_size=5,
- vad_filter=request.app.state.config.WHISPER_VAD_FILTER,
- language=metadata.get("language") or WHISPER_LANGUAGE,
- )
- log.info(
- "Detected language '%s' with probability %f"
- % (info.language, info.language_probability)
- )
- transcript = "".join([segment.text for segment in list(segments)])
- data = {"text": transcript.strip()}
- # save the transcript to a json file
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- log.debug(data)
- return data
- elif request.app.state.config.STT_ENGINE == "openai":
- r = None
- try:
- r = requests.post(
- url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
- headers={
- "Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}"
- },
- files={"file": (filename, open(file_path, "rb"))},
- data={
- "model": request.app.state.config.STT_MODEL,
- **(
- {"language": metadata.get("language")}
- if metadata.get("language")
- else {}
- ),
- },
- )
- r.raise_for_status()
- data = r.json()
- # save the transcript to a json file
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- return data
- except Exception as e:
- log.exception(e)
- detail = None
- if r is not None:
- try:
- res = r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise Exception(detail if detail else "Open WebUI: Server Connection Error")
- elif request.app.state.config.STT_ENGINE == "deepgram":
- try:
- # Determine the MIME type of the file
- mime, _ = mimetypes.guess_type(file_path)
- if not mime:
- mime = "audio/wav" # fallback to wav if undetectable
- # Read the audio file
- with open(file_path, "rb") as f:
- file_data = f.read()
- # Build headers and parameters
- headers = {
- "Authorization": f"Token {request.app.state.config.DEEPGRAM_API_KEY}",
- "Content-Type": mime,
- }
- # Add model if specified
- params = {}
- if request.app.state.config.STT_MODEL:
- params["model"] = request.app.state.config.STT_MODEL
- # Make request to Deepgram API
- r = requests.post(
- "https://api.deepgram.com/v1/listen?smart_format=true",
- headers=headers,
- params=params,
- data=file_data,
- )
- r.raise_for_status()
- response_data = r.json()
- # Extract transcript from Deepgram response
- try:
- transcript = response_data["results"]["channels"][0]["alternatives"][
- 0
- ].get("transcript", "")
- except (KeyError, IndexError) as e:
- log.error(f"Malformed response from Deepgram: {str(e)}")
- raise Exception(
- "Failed to parse Deepgram response - unexpected response format"
- )
- data = {"text": transcript.strip()}
- # Save transcript
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- return data
- except Exception as e:
- log.exception(e)
- detail = None
- if r is not None:
- try:
- res = r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise Exception(detail if detail else "Open WebUI: Server Connection Error")
- elif request.app.state.config.STT_ENGINE == "azure":
- # Check file exists and size
- if not os.path.exists(file_path):
- raise HTTPException(status_code=400, detail="Audio file not found")
- # Check file size (Azure has a larger limit of 200MB)
- file_size = os.path.getsize(file_path)
- if file_size > AZURE_MAX_FILE_SIZE:
- raise HTTPException(
- status_code=400,
- detail=f"File size exceeds Azure's limit of {AZURE_MAX_FILE_SIZE_MB}MB",
- )
- api_key = request.app.state.config.AUDIO_STT_AZURE_API_KEY
- region = request.app.state.config.AUDIO_STT_AZURE_REGION or "eastus"
- locales = request.app.state.config.AUDIO_STT_AZURE_LOCALES
- base_url = request.app.state.config.AUDIO_STT_AZURE_BASE_URL
- max_speakers = request.app.state.config.AUDIO_STT_AZURE_MAX_SPEAKERS or 3
- # IF NO LOCALES, USE DEFAULTS
- if len(locales) < 2:
- locales = [
- "en-US",
- "es-ES",
- "es-MX",
- "fr-FR",
- "hi-IN",
- "it-IT",
- "de-DE",
- "en-GB",
- "en-IN",
- "ja-JP",
- "ko-KR",
- "pt-BR",
- "zh-CN",
- ]
- locales = ",".join(locales)
- if not api_key or not region:
- raise HTTPException(
- status_code=400,
- detail="Azure API key is required for Azure STT",
- )
- r = None
- try:
- # Prepare the request
- data = {
- "definition": json.dumps(
- {
- "locales": locales.split(","),
- "diarization": {"maxSpeakers": max_speakers, "enabled": True},
- }
- if locales
- else {}
- )
- }
- url = (
- base_url or f"https://{region}.api.cognitive.microsoft.com"
- ) + "/speechtotext/transcriptions:transcribe?api-version=2024-11-15"
- # Use context manager to ensure file is properly closed
- with open(file_path, "rb") as audio_file:
- r = requests.post(
- url=url,
- files={"audio": audio_file},
- data=data,
- headers={
- "Ocp-Apim-Subscription-Key": api_key,
- },
- )
- r.raise_for_status()
- response = r.json()
- # Extract transcript from response
- if not response.get("combinedPhrases"):
- raise ValueError("No transcription found in response")
- # Get the full transcript from combinedPhrases
- transcript = response["combinedPhrases"][0].get("text", "").strip()
- if not transcript:
- raise ValueError("Empty transcript in response")
- data = {"text": transcript}
- # Save transcript to json file (consistent with other providers)
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- log.debug(data)
- return data
- except (KeyError, IndexError, ValueError) as e:
- log.exception("Error parsing Azure response")
- raise HTTPException(
- status_code=500,
- detail=f"Failed to parse Azure response: {str(e)}",
- )
- except requests.exceptions.RequestException as e:
- log.exception(e)
- detail = None
- try:
- if r is not None and r.status_code != 200:
- res = r.json()
- if "error" in res:
- detail = f"External: {res['error'].get('message', '')}"
- except Exception:
- detail = f"External: {e}"
- raise HTTPException(
- status_code=getattr(r, "status_code", 500) if r else 500,
- detail=detail if detail else "Open WebUI: Server Connection Error",
- )
- def transcribe(request: Request, file_path: str, metadata: Optional[dict] = None):
- log.info(f"transcribe: {file_path} {metadata}")
- if is_audio_conversion_required(file_path):
- file_path = convert_audio_to_mp3(file_path)
- try:
- file_path = compress_audio(file_path)
- except Exception as e:
- log.exception(e)
- # Always produce a list of chunk paths (could be one entry if small)
- try:
- chunk_paths = split_audio(file_path, MAX_FILE_SIZE)
- print(f"Chunk paths: {chunk_paths}")
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- results = []
- try:
- with ThreadPoolExecutor() as executor:
- # Submit tasks for each chunk_path
- futures = [
- executor.submit(transcription_handler, request, chunk_path, metadata)
- for chunk_path in chunk_paths
- ]
- # Gather results as they complete
- for future in futures:
- try:
- results.append(future.result())
- except Exception as transcribe_exc:
- raise HTTPException(
- status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
- detail=f"Error transcribing chunk: {transcribe_exc}",
- )
- finally:
- # Clean up only the temporary chunks, never the original file
- for chunk_path in chunk_paths:
- if chunk_path != file_path and os.path.isfile(chunk_path):
- try:
- os.remove(chunk_path)
- except Exception:
- pass
- return {
- "text": " ".join([result["text"] for result in results]),
- }
- def compress_audio(file_path):
- if os.path.getsize(file_path) > MAX_FILE_SIZE:
- id = os.path.splitext(os.path.basename(file_path))[
- 0
- ] # Handles names with multiple dots
- file_dir = os.path.dirname(file_path)
- audio = AudioSegment.from_file(file_path)
- audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio
- compressed_path = os.path.join(file_dir, f"{id}_compressed.mp3")
- audio.export(compressed_path, format="mp3", bitrate="32k")
- # log.debug(f"Compressed audio to {compressed_path}") # Uncomment if log is defined
- return compressed_path
- else:
- return file_path
- def split_audio(file_path, max_bytes, format="mp3", bitrate="32k"):
- """
- Splits audio into chunks not exceeding max_bytes.
- Returns a list of chunk file paths. If audio fits, returns list with original path.
- """
- file_size = os.path.getsize(file_path)
- if file_size <= max_bytes:
- return [file_path] # Nothing to split
- audio = AudioSegment.from_file(file_path)
- duration_ms = len(audio)
- orig_size = file_size
- approx_chunk_ms = max(int(duration_ms * (max_bytes / orig_size)) - 1000, 1000)
- chunks = []
- start = 0
- i = 0
- base, _ = os.path.splitext(file_path)
- while start < duration_ms:
- end = min(start + approx_chunk_ms, duration_ms)
- chunk = audio[start:end]
- chunk_path = f"{base}_chunk_{i}.{format}"
- chunk.export(chunk_path, format=format, bitrate=bitrate)
- # Reduce chunk duration if still too large
- while os.path.getsize(chunk_path) > max_bytes and (end - start) > 5000:
- end = start + ((end - start) // 2)
- chunk = audio[start:end]
- chunk.export(chunk_path, format=format, bitrate=bitrate)
- if os.path.getsize(chunk_path) > max_bytes:
- os.remove(chunk_path)
- raise Exception("Audio chunk cannot be reduced below max file size.")
- chunks.append(chunk_path)
- start = end
- i += 1
- return chunks
- @router.post("/transcriptions")
- def transcription(
- request: Request,
- file: UploadFile = File(...),
- language: Optional[str] = Form(None),
- user=Depends(get_verified_user),
- ):
- log.info(f"file.content_type: {file.content_type}")
- supported_content_types = request.app.state.config.STT_SUPPORTED_CONTENT_TYPES or [
- "audio/*",
- "video/webm",
- ]
- if not any(
- fnmatch(file.content_type, content_type)
- for content_type in supported_content_types
- ):
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
- )
- try:
- ext = file.filename.split(".")[-1]
- id = uuid.uuid4()
- filename = f"{id}.{ext}"
- contents = file.file.read()
- file_dir = f"{CACHE_DIR}/audio/transcriptions"
- os.makedirs(file_dir, exist_ok=True)
- file_path = f"{file_dir}/{filename}"
- with open(file_path, "wb") as f:
- f.write(contents)
- try:
- metadata = None
- if language:
- metadata = {"language": language}
- result = transcribe(request, file_path, metadata)
- return {
- **result,
- "filename": os.path.basename(file_path),
- }
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- def get_available_models(request: Request) -> list[dict]:
- available_models = []
- if request.app.state.config.TTS_ENGINE == "openai":
- # Use custom endpoint if not using the official OpenAI API URL
- if not request.app.state.config.TTS_OPENAI_API_BASE_URL.startswith(
- "https://api.openai.com"
- ):
- try:
- response = requests.get(
- f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/models"
- )
- response.raise_for_status()
- data = response.json()
- available_models = data.get("models", [])
- except Exception as e:
- log.error(f"Error fetching models from custom endpoint: {str(e)}")
- available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}]
- else:
- available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}]
- elif request.app.state.config.TTS_ENGINE == "elevenlabs":
- try:
- response = requests.get(
- "https://api.elevenlabs.io/v1/models",
- headers={
- "xi-api-key": request.app.state.config.TTS_API_KEY,
- "Content-Type": "application/json",
- },
- timeout=5,
- )
- response.raise_for_status()
- models = response.json()
- available_models = [
- {"name": model["name"], "id": model["model_id"]} for model in models
- ]
- except requests.RequestException as e:
- log.error(f"Error fetching voices: {str(e)}")
- return available_models
- @router.get("/models")
- async def get_models(request: Request, user=Depends(get_verified_user)):
- return {"models": get_available_models(request)}
- def get_available_voices(request) -> dict:
- """Returns {voice_id: voice_name} dict"""
- available_voices = {}
- if request.app.state.config.TTS_ENGINE == "openai":
- # Use custom endpoint if not using the official OpenAI API URL
- if not request.app.state.config.TTS_OPENAI_API_BASE_URL.startswith(
- "https://api.openai.com"
- ):
- try:
- response = requests.get(
- f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/voices"
- )
- response.raise_for_status()
- data = response.json()
- voices_list = data.get("voices", [])
- available_voices = {voice["id"]: voice["name"] for voice in voices_list}
- except Exception as e:
- log.error(f"Error fetching voices from custom endpoint: {str(e)}")
- available_voices = {
- "alloy": "alloy",
- "echo": "echo",
- "fable": "fable",
- "onyx": "onyx",
- "nova": "nova",
- "shimmer": "shimmer",
- }
- else:
- available_voices = {
- "alloy": "alloy",
- "echo": "echo",
- "fable": "fable",
- "onyx": "onyx",
- "nova": "nova",
- "shimmer": "shimmer",
- }
- elif request.app.state.config.TTS_ENGINE == "elevenlabs":
- try:
- available_voices = get_elevenlabs_voices(
- api_key=request.app.state.config.TTS_API_KEY
- )
- except Exception:
- # Avoided @lru_cache with exception
- pass
- elif request.app.state.config.TTS_ENGINE == "azure":
- try:
- region = request.app.state.config.TTS_AZURE_SPEECH_REGION
- base_url = request.app.state.config.TTS_AZURE_SPEECH_BASE_URL
- url = (
- base_url or f"https://{region}.tts.speech.microsoft.com"
- ) + "/cognitiveservices/voices/list"
- headers = {
- "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY
- }
- response = requests.get(url, headers=headers)
- response.raise_for_status()
- voices = response.json()
- for voice in voices:
- available_voices[voice["ShortName"]] = (
- f"{voice['DisplayName']} ({voice['ShortName']})"
- )
- except requests.RequestException as e:
- log.error(f"Error fetching voices: {str(e)}")
- return available_voices
- @lru_cache
- def get_elevenlabs_voices(api_key: str) -> dict:
- """
- Note, set the following in your .env file to use Elevenlabs:
- AUDIO_TTS_ENGINE=elevenlabs
- AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key
- AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices
- AUDIO_TTS_MODEL=eleven_multilingual_v2
- """
- try:
- # TODO: Add retries
- response = requests.get(
- "https://api.elevenlabs.io/v1/voices",
- headers={
- "xi-api-key": api_key,
- "Content-Type": "application/json",
- },
- )
- response.raise_for_status()
- voices_data = response.json()
- voices = {}
- for voice in voices_data.get("voices", []):
- voices[voice["voice_id"]] = voice["name"]
- except requests.RequestException as e:
- # Avoid @lru_cache with exception
- log.error(f"Error fetching voices: {str(e)}")
- raise RuntimeError(f"Error fetching voices: {str(e)}")
- return voices
- @router.get("/voices")
- async def get_voices(request: Request, user=Depends(get_verified_user)):
- return {
- "voices": [
- {"id": k, "name": v} for k, v in get_available_voices(request).items()
- ]
- }
|