utils.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. import hashlib
  6. from concurrent.futures import ThreadPoolExecutor
  7. from huggingface_hub import snapshot_download
  8. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain_core.documents import Document
  11. from open_webui.config import VECTOR_DB
  12. from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT
  13. from open_webui.models.users import UserModel
  14. from open_webui.models.files import Files
  15. from open_webui.retrieval.vector.main import GetResult
  16. from open_webui.env import (
  17. SRC_LOG_LEVELS,
  18. OFFLINE_MODE,
  19. ENABLE_FORWARD_USER_INFO_HEADERS,
  20. )
  21. from open_webui.config import (
  22. RAG_EMBEDDING_QUERY_PREFIX,
  23. RAG_EMBEDDING_CONTENT_PREFIX,
  24. RAG_EMBEDDING_PREFIX_FIELD_NAME,
  25. )
  26. log = logging.getLogger(__name__)
  27. log.setLevel(SRC_LOG_LEVELS["RAG"])
  28. from typing import Any
  29. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  30. from langchain_core.retrievers import BaseRetriever
  31. class VectorSearchRetriever(BaseRetriever):
  32. collection_name: Any
  33. embedding_function: Any
  34. top_k: int
  35. def _get_relevant_documents(
  36. self,
  37. query: str,
  38. *,
  39. run_manager: CallbackManagerForRetrieverRun,
  40. ) -> list[Document]:
  41. result = VECTOR_DB_CLIENT.search(
  42. collection_name=self.collection_name,
  43. vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)],
  44. limit=self.top_k,
  45. )
  46. ids = result.ids[0]
  47. metadatas = result.metadatas[0]
  48. documents = result.documents[0]
  49. results = []
  50. for idx in range(len(ids)):
  51. results.append(
  52. Document(
  53. metadata=metadatas[idx],
  54. page_content=documents[idx],
  55. )
  56. )
  57. return results
  58. def query_doc(
  59. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  60. ):
  61. try:
  62. log.debug(f"query_doc:doc {collection_name}")
  63. result = VECTOR_DB_CLIENT.search(
  64. collection_name=collection_name,
  65. vectors=[query_embedding],
  66. limit=k,
  67. )
  68. if result:
  69. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  70. return result
  71. except Exception as e:
  72. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  73. raise e
  74. def get_doc(collection_name: str, user: UserModel = None):
  75. try:
  76. log.debug(f"get_doc:doc {collection_name}")
  77. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  78. if result:
  79. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  80. return result
  81. except Exception as e:
  82. log.exception(f"Error getting doc {collection_name}: {e}")
  83. raise e
  84. def query_doc_with_hybrid_search(
  85. collection_name: str,
  86. collection_result: GetResult,
  87. query: str,
  88. embedding_function,
  89. k: int,
  90. reranking_function,
  91. k_reranker: int,
  92. r: float,
  93. hybrid_bm25_weight: float,
  94. ) -> dict:
  95. try:
  96. log.debug(f"query_doc_with_hybrid_search:doc {collection_name}")
  97. bm25_retriever = BM25Retriever.from_texts(
  98. texts=collection_result.documents[0],
  99. metadatas=collection_result.metadatas[0],
  100. )
  101. bm25_retriever.k = k
  102. vector_search_retriever = VectorSearchRetriever(
  103. collection_name=collection_name,
  104. embedding_function=embedding_function,
  105. top_k=k,
  106. )
  107. if hybrid_bm25_weight <= 0:
  108. ensemble_retriever = EnsembleRetriever(
  109. retrievers=[vector_search_retriever], weights=[1.]
  110. )
  111. elif hybrid_bm25_weight >= 1:
  112. ensemble_retriever = EnsembleRetriever(
  113. retrievers=[bm25_retriever], weights=[1.]
  114. )
  115. else:
  116. ensemble_retriever = EnsembleRetriever(
  117. retrievers=[bm25_retriever, vector_search_retriever],
  118. weights=[hybrid_bm25_weight, 1. - hybrid_bm25_weight]
  119. )
  120. compressor = RerankCompressor(
  121. embedding_function=embedding_function,
  122. top_n=k_reranker,
  123. reranking_function=reranking_function,
  124. r_score=r,
  125. )
  126. compression_retriever = ContextualCompressionRetriever(
  127. base_compressor=compressor, base_retriever=ensemble_retriever
  128. )
  129. result = compression_retriever.invoke(query)
  130. distances = [d.metadata.get("score") for d in result]
  131. documents = [d.page_content for d in result]
  132. metadatas = [d.metadata for d in result]
  133. # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
  134. if k < k_reranker:
  135. sorted_items = sorted(
  136. zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True
  137. )
  138. sorted_items = sorted_items[:k]
  139. distances, documents, metadatas = map(list, zip(*sorted_items))
  140. result = {
  141. "distances": [distances],
  142. "documents": [documents],
  143. "metadatas": [metadatas],
  144. }
  145. log.info(
  146. "query_doc_with_hybrid_search:result "
  147. + f'{result["metadatas"]} {result["distances"]}'
  148. )
  149. return result
  150. except Exception as e:
  151. log.exception(f"Error querying doc {collection_name} with hybrid search: {e}")
  152. raise e
  153. def merge_get_results(get_results: list[dict]) -> dict:
  154. # Initialize lists to store combined data
  155. combined_documents = []
  156. combined_metadatas = []
  157. combined_ids = []
  158. for data in get_results:
  159. combined_documents.extend(data["documents"][0])
  160. combined_metadatas.extend(data["metadatas"][0])
  161. combined_ids.extend(data["ids"][0])
  162. # Create the output dictionary
  163. result = {
  164. "documents": [combined_documents],
  165. "metadatas": [combined_metadatas],
  166. "ids": [combined_ids],
  167. }
  168. return result
  169. def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict:
  170. # Initialize lists to store combined data
  171. combined = dict() # To store documents with unique document hashes
  172. for data in query_results:
  173. distances = data["distances"][0]
  174. documents = data["documents"][0]
  175. metadatas = data["metadatas"][0]
  176. for distance, document, metadata in zip(distances, documents, metadatas):
  177. if isinstance(document, str):
  178. doc_hash = hashlib.sha256(
  179. document.encode()
  180. ).hexdigest() # Compute a hash for uniqueness
  181. if doc_hash not in combined.keys():
  182. combined[doc_hash] = (distance, document, metadata)
  183. continue # if doc is new, no further comparison is needed
  184. # if doc is alredy in, but new distance is better, update
  185. if distance > combined[doc_hash][0]:
  186. combined[doc_hash] = (distance, document, metadata)
  187. combined = list(combined.values())
  188. # Sort the list based on distances
  189. combined.sort(key=lambda x: x[0], reverse=True)
  190. # Slice to keep only the top k elements
  191. sorted_distances, sorted_documents, sorted_metadatas = (
  192. zip(*combined[:k]) if combined else ([], [], [])
  193. )
  194. # Create and return the output dictionary
  195. return {
  196. "distances": [list(sorted_distances)],
  197. "documents": [list(sorted_documents)],
  198. "metadatas": [list(sorted_metadatas)],
  199. }
  200. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  201. results = []
  202. for collection_name in collection_names:
  203. if collection_name:
  204. try:
  205. result = get_doc(collection_name=collection_name)
  206. if result is not None:
  207. results.append(result.model_dump())
  208. except Exception as e:
  209. log.exception(f"Error when querying the collection: {e}")
  210. else:
  211. pass
  212. return merge_get_results(results)
  213. def query_collection(
  214. collection_names: list[str],
  215. queries: list[str],
  216. embedding_function,
  217. k: int,
  218. ) -> dict:
  219. results = []
  220. error = False
  221. def process_query_collection(collection_name, query_embedding):
  222. try:
  223. if collection_name:
  224. result = query_doc(
  225. collection_name=collection_name,
  226. k=k,
  227. query_embedding=query_embedding,
  228. )
  229. if result is not None:
  230. return result.model_dump(), None
  231. return None, None
  232. except Exception as e:
  233. log.exception(f"Error when querying the collection: {e}")
  234. return None, e
  235. # Generate all query embeddings (in one call)
  236. query_embeddings = embedding_function(queries, prefix=RAG_EMBEDDING_QUERY_PREFIX)
  237. log.debug(
  238. f"query_collection: processing {len(queries)} queries across {len(collection_names)} collections"
  239. )
  240. with ThreadPoolExecutor() as executor:
  241. future_results = []
  242. for query_embedding in query_embeddings:
  243. for collection_name in collection_names:
  244. result = executor.submit(
  245. process_query_collection, collection_name, query_embedding
  246. )
  247. future_results.append(result)
  248. task_results = [future.result() for future in future_results]
  249. for result, err in task_results:
  250. if err is not None:
  251. error = True
  252. elif result is not None:
  253. results.append(result)
  254. if error and not results:
  255. log.warning("All collection queries failed. No results returned.")
  256. return merge_and_sort_query_results(results, k=k)
  257. def query_collection_with_hybrid_search(
  258. collection_names: list[str],
  259. queries: list[str],
  260. embedding_function,
  261. k: int,
  262. reranking_function,
  263. k_reranker: int,
  264. r: float,
  265. hybrid_bm25_weight: float,
  266. ) -> dict:
  267. results = []
  268. error = False
  269. # Fetch collection data once per collection sequentially
  270. # Avoid fetching the same data multiple times later
  271. collection_results = {}
  272. for collection_name in collection_names:
  273. try:
  274. log.debug(
  275. f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}"
  276. )
  277. collection_results[collection_name] = VECTOR_DB_CLIENT.get(
  278. collection_name=collection_name
  279. )
  280. except Exception as e:
  281. log.exception(f"Failed to fetch collection {collection_name}: {e}")
  282. collection_results[collection_name] = None
  283. log.info(
  284. f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..."
  285. )
  286. def process_query(collection_name, query):
  287. try:
  288. result = query_doc_with_hybrid_search(
  289. collection_name=collection_name,
  290. collection_result=collection_results[collection_name],
  291. query=query,
  292. embedding_function=embedding_function,
  293. k=k,
  294. reranking_function=reranking_function,
  295. k_reranker=k_reranker,
  296. r=r,
  297. hybrid_bm25_weight=hybrid_bm25_weight,
  298. )
  299. return result, None
  300. except Exception as e:
  301. log.exception(f"Error when querying the collection with hybrid_search: {e}")
  302. return None, e
  303. # Prepare tasks for all collections and queries
  304. # Avoid running any tasks for collections that failed to fetch data (have assigned None)
  305. tasks = [
  306. (cn, q)
  307. for cn in collection_names
  308. if collection_results[cn] is not None
  309. for q in queries
  310. ]
  311. with ThreadPoolExecutor() as executor:
  312. future_results = [executor.submit(process_query, cn, q) for cn, q in tasks]
  313. task_results = [future.result() for future in future_results]
  314. for result, err in task_results:
  315. if err is not None:
  316. error = True
  317. elif result is not None:
  318. results.append(result)
  319. if error and not results:
  320. raise Exception(
  321. "Hybrid search failed for all collections. Using Non-hybrid search as fallback."
  322. )
  323. return merge_and_sort_query_results(results, k=k)
  324. def get_embedding_function(
  325. embedding_engine,
  326. embedding_model,
  327. embedding_function,
  328. url,
  329. key,
  330. embedding_batch_size,
  331. ):
  332. if embedding_engine == "":
  333. return lambda query, prefix=None, user=None: embedding_function.encode(
  334. query, **({"prompt": prefix} if prefix else {})
  335. ).tolist()
  336. elif embedding_engine in ["ollama", "openai"]:
  337. func = lambda query, prefix=None, user=None: generate_embeddings(
  338. engine=embedding_engine,
  339. model=embedding_model,
  340. text=query,
  341. prefix=prefix,
  342. url=url,
  343. key=key,
  344. user=user,
  345. )
  346. def generate_multiple(query, prefix, user, func):
  347. if isinstance(query, list):
  348. embeddings = []
  349. for i in range(0, len(query), embedding_batch_size):
  350. embeddings.extend(
  351. func(
  352. query[i : i + embedding_batch_size],
  353. prefix=prefix,
  354. user=user,
  355. )
  356. )
  357. return embeddings
  358. else:
  359. return func(query, prefix, user)
  360. return lambda query, prefix=None, user=None: generate_multiple(
  361. query, prefix, user, func
  362. )
  363. else:
  364. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  365. def get_sources_from_files(
  366. request,
  367. files,
  368. queries,
  369. embedding_function,
  370. k,
  371. reranking_function,
  372. k_reranker,
  373. r,
  374. hybrid_bm25_weight,
  375. hybrid_search,
  376. full_context=False,
  377. ):
  378. log.debug(
  379. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  380. )
  381. extracted_collections = []
  382. relevant_contexts = []
  383. for file in files:
  384. context = None
  385. if file.get("docs"):
  386. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  387. context = {
  388. "documents": [[doc.get("content") for doc in file.get("docs")]],
  389. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  390. }
  391. elif file.get("context") == "full":
  392. # Manual Full Mode Toggle
  393. context = {
  394. "documents": [[file.get("file").get("data", {}).get("content")]],
  395. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  396. }
  397. elif (
  398. file.get("type") != "web_search"
  399. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  400. ):
  401. # BYPASS_EMBEDDING_AND_RETRIEVAL
  402. if file.get("type") == "collection":
  403. file_ids = file.get("data", {}).get("file_ids", [])
  404. documents = []
  405. metadatas = []
  406. for file_id in file_ids:
  407. file_object = Files.get_file_by_id(file_id)
  408. if file_object:
  409. documents.append(file_object.data.get("content", ""))
  410. metadatas.append(
  411. {
  412. "file_id": file_id,
  413. "name": file_object.filename,
  414. "source": file_object.filename,
  415. }
  416. )
  417. context = {
  418. "documents": [documents],
  419. "metadatas": [metadatas],
  420. }
  421. elif file.get("id"):
  422. file_object = Files.get_file_by_id(file.get("id"))
  423. if file_object:
  424. context = {
  425. "documents": [[file_object.data.get("content", "")]],
  426. "metadatas": [
  427. [
  428. {
  429. "file_id": file.get("id"),
  430. "name": file_object.filename,
  431. "source": file_object.filename,
  432. }
  433. ]
  434. ],
  435. }
  436. elif file.get("file").get("data"):
  437. context = {
  438. "documents": [[file.get("file").get("data", {}).get("content")]],
  439. "metadatas": [
  440. [file.get("file").get("data", {}).get("metadata", {})]
  441. ],
  442. }
  443. else:
  444. collection_names = []
  445. if file.get("type") == "collection":
  446. if file.get("legacy"):
  447. collection_names = file.get("collection_names", [])
  448. else:
  449. collection_names.append(file["id"])
  450. elif file.get("collection_name"):
  451. collection_names.append(file["collection_name"])
  452. elif file.get("id"):
  453. if file.get("legacy"):
  454. collection_names.append(f"{file['id']}")
  455. else:
  456. collection_names.append(f"file-{file['id']}")
  457. collection_names = set(collection_names).difference(extracted_collections)
  458. if not collection_names:
  459. log.debug(f"skipping {file} as it has already been extracted")
  460. continue
  461. if full_context:
  462. try:
  463. context = get_all_items_from_collections(collection_names)
  464. except Exception as e:
  465. log.exception(e)
  466. else:
  467. try:
  468. context = None
  469. if file.get("type") == "text":
  470. context = file["content"]
  471. else:
  472. if hybrid_search:
  473. try:
  474. context = query_collection_with_hybrid_search(
  475. collection_names=collection_names,
  476. queries=queries,
  477. embedding_function=embedding_function,
  478. k=k,
  479. reranking_function=reranking_function,
  480. k_reranker=k_reranker,
  481. r=r,
  482. hybrid_bm25_weight=hybrid_bm25_weight,
  483. )
  484. except Exception as e:
  485. log.debug(
  486. "Error when using hybrid search, using"
  487. " non hybrid search as fallback."
  488. )
  489. if (not hybrid_search) or (context is None):
  490. context = query_collection(
  491. collection_names=collection_names,
  492. queries=queries,
  493. embedding_function=embedding_function,
  494. k=k,
  495. )
  496. except Exception as e:
  497. log.exception(e)
  498. extracted_collections.extend(collection_names)
  499. if context:
  500. if "data" in file:
  501. del file["data"]
  502. relevant_contexts.append({**context, "file": file})
  503. sources = []
  504. for context in relevant_contexts:
  505. try:
  506. if "documents" in context:
  507. if "metadatas" in context:
  508. source = {
  509. "source": context["file"],
  510. "document": context["documents"][0],
  511. "metadata": context["metadatas"][0],
  512. }
  513. if "distances" in context and context["distances"]:
  514. source["distances"] = context["distances"][0]
  515. sources.append(source)
  516. except Exception as e:
  517. log.exception(e)
  518. return sources
  519. def get_model_path(model: str, update_model: bool = False):
  520. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  521. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  522. local_files_only = not update_model
  523. if OFFLINE_MODE:
  524. local_files_only = True
  525. snapshot_kwargs = {
  526. "cache_dir": cache_dir,
  527. "local_files_only": local_files_only,
  528. }
  529. log.debug(f"model: {model}")
  530. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  531. # Inspiration from upstream sentence_transformers
  532. if (
  533. os.path.exists(model)
  534. or ("\\" in model or model.count("/") > 1)
  535. and local_files_only
  536. ):
  537. # If fully qualified path exists, return input, else set repo_id
  538. return model
  539. elif "/" not in model:
  540. # Set valid repo_id for model short-name
  541. model = "sentence-transformers" + "/" + model
  542. snapshot_kwargs["repo_id"] = model
  543. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  544. try:
  545. model_repo_path = snapshot_download(**snapshot_kwargs)
  546. log.debug(f"model_repo_path: {model_repo_path}")
  547. return model_repo_path
  548. except Exception as e:
  549. log.exception(f"Cannot determine model snapshot path: {e}")
  550. return model
  551. def generate_openai_batch_embeddings(
  552. model: str,
  553. texts: list[str],
  554. url: str = "https://api.openai.com/v1",
  555. key: str = "",
  556. prefix: str = None,
  557. user: UserModel = None,
  558. ) -> Optional[list[list[float]]]:
  559. try:
  560. log.debug(
  561. f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}"
  562. )
  563. json_data = {"input": texts, "model": model}
  564. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  565. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  566. r = requests.post(
  567. f"{url}/embeddings",
  568. headers={
  569. "Content-Type": "application/json",
  570. "Authorization": f"Bearer {key}",
  571. **(
  572. {
  573. "X-OpenWebUI-User-Name": user.name,
  574. "X-OpenWebUI-User-Id": user.id,
  575. "X-OpenWebUI-User-Email": user.email,
  576. "X-OpenWebUI-User-Role": user.role,
  577. }
  578. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  579. else {}
  580. ),
  581. },
  582. json=json_data,
  583. )
  584. r.raise_for_status()
  585. data = r.json()
  586. if "data" in data:
  587. return [elem["embedding"] for elem in data["data"]]
  588. else:
  589. raise "Something went wrong :/"
  590. except Exception as e:
  591. log.exception(f"Error generating openai batch embeddings: {e}")
  592. return None
  593. def generate_ollama_batch_embeddings(
  594. model: str,
  595. texts: list[str],
  596. url: str,
  597. key: str = "",
  598. prefix: str = None,
  599. user: UserModel = None,
  600. ) -> Optional[list[list[float]]]:
  601. try:
  602. log.debug(
  603. f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}"
  604. )
  605. json_data = {"input": texts, "model": model}
  606. if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
  607. json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
  608. r = requests.post(
  609. f"{url}/api/embed",
  610. headers={
  611. "Content-Type": "application/json",
  612. "Authorization": f"Bearer {key}",
  613. **(
  614. {
  615. "X-OpenWebUI-User-Name": user.name,
  616. "X-OpenWebUI-User-Id": user.id,
  617. "X-OpenWebUI-User-Email": user.email,
  618. "X-OpenWebUI-User-Role": user.role,
  619. }
  620. if ENABLE_FORWARD_USER_INFO_HEADERS
  621. else {}
  622. ),
  623. },
  624. json=json_data,
  625. )
  626. r.raise_for_status()
  627. data = r.json()
  628. if "embeddings" in data:
  629. return data["embeddings"]
  630. else:
  631. raise "Something went wrong :/"
  632. except Exception as e:
  633. log.exception(f"Error generating ollama batch embeddings: {e}")
  634. return None
  635. def generate_embeddings(
  636. engine: str,
  637. model: str,
  638. text: Union[str, list[str]],
  639. prefix: Union[str, None] = None,
  640. **kwargs,
  641. ):
  642. url = kwargs.get("url", "")
  643. key = kwargs.get("key", "")
  644. user = kwargs.get("user")
  645. if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
  646. if isinstance(text, list):
  647. text = [f"{prefix}{text_element}" for text_element in text]
  648. else:
  649. text = f"{prefix}{text}"
  650. if engine == "ollama":
  651. if isinstance(text, list):
  652. embeddings = generate_ollama_batch_embeddings(
  653. **{
  654. "model": model,
  655. "texts": text,
  656. "url": url,
  657. "key": key,
  658. "prefix": prefix,
  659. "user": user,
  660. }
  661. )
  662. else:
  663. embeddings = generate_ollama_batch_embeddings(
  664. **{
  665. "model": model,
  666. "texts": [text],
  667. "url": url,
  668. "key": key,
  669. "prefix": prefix,
  670. "user": user,
  671. }
  672. )
  673. return embeddings[0] if isinstance(text, str) else embeddings
  674. elif engine == "openai":
  675. if isinstance(text, list):
  676. embeddings = generate_openai_batch_embeddings(
  677. model, text, url, key, prefix, user
  678. )
  679. else:
  680. embeddings = generate_openai_batch_embeddings(
  681. model, [text], url, key, prefix, user
  682. )
  683. return embeddings[0] if isinstance(text, str) else embeddings
  684. import operator
  685. from typing import Optional, Sequence
  686. from langchain_core.callbacks import Callbacks
  687. from langchain_core.documents import BaseDocumentCompressor, Document
  688. class RerankCompressor(BaseDocumentCompressor):
  689. embedding_function: Any
  690. top_n: int
  691. reranking_function: Any
  692. r_score: float
  693. class Config:
  694. extra = "forbid"
  695. arbitrary_types_allowed = True
  696. def compress_documents(
  697. self,
  698. documents: Sequence[Document],
  699. query: str,
  700. callbacks: Optional[Callbacks] = None,
  701. ) -> Sequence[Document]:
  702. reranking = self.reranking_function is not None
  703. if reranking:
  704. scores = self.reranking_function.predict(
  705. [(query, doc.page_content) for doc in documents]
  706. )
  707. else:
  708. from sentence_transformers import util
  709. query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
  710. document_embedding = self.embedding_function(
  711. [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX
  712. )
  713. scores = util.cos_sim(query_embedding, document_embedding)[0]
  714. docs_with_scores = list(
  715. zip(documents, scores.tolist() if not isinstance(scores, list) else scores)
  716. )
  717. if self.r_score:
  718. docs_with_scores = [
  719. (d, s) for d, s in docs_with_scores if s >= self.r_score
  720. ]
  721. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  722. final_results = []
  723. for doc, doc_score in result[: self.top_n]:
  724. metadata = doc.metadata
  725. metadata["score"] = doc_score
  726. doc = Document(
  727. page_content=doc.page_content,
  728. metadata=metadata,
  729. )
  730. final_results.append(doc)
  731. return final_results