123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 |
- from opensearchpy import OpenSearch
- from opensearchpy.helpers import bulk
- from typing import Optional
- from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
- from open_webui.config import (
- OPENSEARCH_URI,
- OPENSEARCH_SSL,
- OPENSEARCH_CERT_VERIFY,
- OPENSEARCH_USERNAME,
- OPENSEARCH_PASSWORD,
- )
- class OpenSearchClient:
- def __init__(self):
- self.index_prefix = "open_webui"
- self.client = OpenSearch(
- hosts=[OPENSEARCH_URI],
- use_ssl=OPENSEARCH_SSL,
- verify_certs=OPENSEARCH_CERT_VERIFY,
- http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
- )
- def _get_index_name(self, collection_name: str) -> str:
- return f"{self.index_prefix}_{collection_name}"
- def _result_to_get_result(self, result) -> GetResult:
- if not result["hits"]["hits"]:
- return None
- ids = []
- documents = []
- metadatas = []
- for hit in result["hits"]["hits"]:
- ids.append(hit["_id"])
- documents.append(hit["_source"].get("text"))
- metadatas.append(hit["_source"].get("metadata"))
- return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
- def _result_to_search_result(self, result) -> SearchResult:
- if not result["hits"]["hits"]:
- return None
- ids = []
- distances = []
- documents = []
- metadatas = []
- for hit in result["hits"]["hits"]:
- ids.append(hit["_id"])
- distances.append(hit["_score"])
- documents.append(hit["_source"].get("text"))
- metadatas.append(hit["_source"].get("metadata"))
- return SearchResult(
- ids=[ids],
- distances=[distances],
- documents=[documents],
- metadatas=[metadatas],
- )
- def _create_index(self, collection_name: str, dimension: int):
- body = {
- "settings": {"index": {"knn": True}},
- "mappings": {
- "properties": {
- "id": {"type": "keyword"},
- "vector": {
- "type": "knn_vector",
- "dimension": dimension, # Adjust based on your vector dimensions
- "index": True,
- "similarity": "faiss",
- "method": {
- "name": "hnsw",
- "space_type": "innerproduct", # Use inner product to approximate cosine similarity
- "engine": "faiss",
- "parameters": {
- "ef_construction": 128,
- "m": 16,
- },
- },
- },
- "text": {"type": "text"},
- "metadata": {"type": "object"},
- }
- },
- }
- self.client.indices.create(
- index=self._get_index_name(collection_name), body=body
- )
- def _create_batches(self, items: list[VectorItem], batch_size=100):
- for i in range(0, len(items), batch_size):
- yield items[i : i + batch_size]
- def has_collection(self, collection_name: str) -> bool:
- # has_collection here means has index.
- # We are simply adapting to the norms of the other DBs.
- return self.client.indices.exists(index=self._get_index_name(collection_name))
- def delete_collection(self, collection_name: str):
- # delete_collection here means delete index.
- # We are simply adapting to the norms of the other DBs.
- self.client.indices.delete(index=self._get_index_name(collection_name))
- def search(
- self, collection_name: str, vectors: list[list[float | int]], limit: int
- ) -> Optional[SearchResult]:
- try:
- if not self.has_collection(collection_name):
- return None
- query = {
- "size": limit,
- "_source": ["text", "metadata"],
- "query": {
- "script_score": {
- "query": {"match_all": {}},
- "script": {
- "source": "(cosineSimilarity(params.query_value, doc[params.field]) + 1.0) / 2.0",
- "params": {
- "field": "vector",
- "query_value": vectors[0],
- }, # Assuming single query vector
- },
- }
- },
- }
- result = self.client.search(
- index=self._get_index_name(collection_name), body=query
- )
- return self._result_to_search_result(result)
- except Exception as e:
- return None
- def query(
- self, collection_name: str, filter: dict, limit: Optional[int] = None
- ) -> Optional[GetResult]:
- if not self.has_collection(collection_name):
- return None
- query_body = {
- "query": {"bool": {"filter": []}},
- "_source": ["text", "metadata"],
- }
- for field, value in filter.items():
- query_body["query"]["bool"]["filter"].append(
- {"match": {"metadata." + str(field): value}}
- )
- size = limit if limit else 10
- try:
- result = self.client.search(
- index=self._get_index_name(collection_name),
- body=query_body,
- size=size,
- )
- return self._result_to_get_result(result)
- except Exception as e:
- return None
- def _create_index_if_not_exists(self, collection_name: str, dimension: int):
- if not self.has_collection(collection_name):
- self._create_index(collection_name, dimension)
- def get(self, collection_name: str) -> Optional[GetResult]:
- query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]}
- result = self.client.search(
- index=self._get_index_name(collection_name), body=query
- )
- return self._result_to_get_result(result)
- def insert(self, collection_name: str, items: list[VectorItem]):
- self._create_index_if_not_exists(
- collection_name=collection_name, dimension=len(items[0]["vector"])
- )
- for batch in self._create_batches(items):
- actions = [
- {
- "_op_type": "index",
- "_index": self._get_index_name(collection_name),
- "_id": item["id"],
- "_source": {
- "vector": item["vector"],
- "text": item["text"],
- "metadata": item["metadata"],
- },
- }
- for item in batch
- ]
- bulk(self.client, actions)
- def upsert(self, collection_name: str, items: list[VectorItem]):
- self._create_index_if_not_exists(
- collection_name=collection_name, dimension=len(items[0]["vector"])
- )
- for batch in self._create_batches(items):
- actions = [
- {
- "_op_type": "update",
- "_index": self._get_index_name(collection_name),
- "_id": item["id"],
- "doc": {
- "vector": item["vector"],
- "text": item["text"],
- "metadata": item["metadata"],
- },
- "doc_as_upsert": True,
- }
- for item in batch
- ]
- bulk(self.client, actions)
- def delete(
- self,
- collection_name: str,
- ids: Optional[list[str]] = None,
- filter: Optional[dict] = None,
- ):
- if ids:
- actions = [
- {
- "_op_type": "delete",
- "_index": self._get_index_name(collection_name),
- "_id": id,
- }
- for id in ids
- ]
- bulk(self.client, actions)
- elif filter:
- query_body = {
- "query": {"bool": {"filter": []}},
- }
- for field, value in filter.items():
- query_body["query"]["bool"]["filter"].append(
- {"match": {"metadata." + str(field): value}}
- )
- self.client.delete_by_query(
- index=self._get_index_name(collection_name), body=query_body
- )
- def reset(self):
- indices = self.client.indices.get(index=f"{self.index_prefix}_*")
- for index in indices:
- self.client.indices.delete(index=index)
|