|
@@ -74,7 +74,7 @@ static void (*rt_free_hook)(void *ptr);
|
|
|
*/
|
|
|
void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
|
|
|
{
|
|
|
- rt_malloc_hook = hook;
|
|
|
+ rt_malloc_hook = hook;
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -85,7 +85,7 @@ void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
|
|
|
*/
|
|
|
void rt_free_sethook(void (*hook)(void *ptr))
|
|
|
{
|
|
|
- rt_free_hook = hook;
|
|
|
+ rt_free_hook = hook;
|
|
|
}
|
|
|
|
|
|
/*@}*/
|
|
@@ -95,11 +95,11 @@ void rt_free_sethook(void (*hook)(void *ptr))
|
|
|
#define HEAP_MAGIC 0x1ea0
|
|
|
struct heap_mem
|
|
|
{
|
|
|
- /* magic and used flag */
|
|
|
- rt_uint16_t magic;
|
|
|
- rt_uint16_t used;
|
|
|
+ /* magic and used flag */
|
|
|
+ rt_uint16_t magic;
|
|
|
+ rt_uint16_t used;
|
|
|
|
|
|
- rt_size_t next, prev;
|
|
|
+ rt_size_t next, prev;
|
|
|
};
|
|
|
|
|
|
/** pointer to the heap: for alignment, heap_ptr is now a pointer instead of an array */
|
|
@@ -123,38 +123,42 @@ static rt_size_t used_mem, max_mem;
|
|
|
|
|
|
static void plug_holes(struct heap_mem *mem)
|
|
|
{
|
|
|
- struct heap_mem *nmem;
|
|
|
- struct heap_mem *pmem;
|
|
|
-
|
|
|
- RT_ASSERT((rt_uint8_t *)mem >= heap_ptr);
|
|
|
- RT_ASSERT((rt_uint8_t *)mem < (rt_uint8_t *)heap_end);
|
|
|
- RT_ASSERT(mem->used == 0);
|
|
|
-
|
|
|
- /* plug hole forward */
|
|
|
- nmem = (struct heap_mem *)&heap_ptr[mem->next];
|
|
|
- if (mem != nmem && nmem->used == 0 && (rt_uint8_t *)nmem != (rt_uint8_t *)heap_end)
|
|
|
- {
|
|
|
- /* if mem->next is unused and not end of heap_ptr, combine mem and mem->next */
|
|
|
- if (lfree == nmem)
|
|
|
- {
|
|
|
- lfree = mem;
|
|
|
- }
|
|
|
- mem->next = nmem->next;
|
|
|
- ((struct heap_mem *)&heap_ptr[nmem->next])->prev = (rt_uint8_t *)mem - heap_ptr;
|
|
|
- }
|
|
|
-
|
|
|
- /* plug hole backward */
|
|
|
- pmem = (struct heap_mem *)&heap_ptr[mem->prev];
|
|
|
- if (pmem != mem && pmem->used == 0)
|
|
|
- {
|
|
|
- /* if mem->prev is unused, combine mem and mem->prev */
|
|
|
- if (lfree == mem)
|
|
|
- {
|
|
|
- lfree = pmem;
|
|
|
- }
|
|
|
- pmem->next = mem->next;
|
|
|
- ((struct heap_mem *)&heap_ptr[mem->next])->prev = (rt_uint8_t *)pmem - heap_ptr;
|
|
|
- }
|
|
|
+ struct heap_mem *nmem;
|
|
|
+ struct heap_mem *pmem;
|
|
|
+
|
|
|
+ RT_ASSERT((rt_uint8_t *)mem >= heap_ptr);
|
|
|
+ RT_ASSERT((rt_uint8_t *)mem < (rt_uint8_t *)heap_end);
|
|
|
+ RT_ASSERT(mem->used == 0);
|
|
|
+
|
|
|
+ /* plug hole forward */
|
|
|
+ nmem = (struct heap_mem *)&heap_ptr[mem->next];
|
|
|
+ if (mem != nmem &&
|
|
|
+ nmem->used == 0 &&
|
|
|
+ (rt_uint8_t *)nmem != (rt_uint8_t *)heap_end)
|
|
|
+ {
|
|
|
+ /* if mem->next is unused and not end of heap_ptr,
|
|
|
+ * combine mem and mem->next
|
|
|
+ */
|
|
|
+ if (lfree == nmem)
|
|
|
+ {
|
|
|
+ lfree = mem;
|
|
|
+ }
|
|
|
+ mem->next = nmem->next;
|
|
|
+ ((struct heap_mem *)&heap_ptr[nmem->next])->prev = (rt_uint8_t *)mem - heap_ptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* plug hole backward */
|
|
|
+ pmem = (struct heap_mem *)&heap_ptr[mem->prev];
|
|
|
+ if (pmem != mem && pmem->used == 0)
|
|
|
+ {
|
|
|
+ /* if mem->prev is unused, combine mem and mem->prev */
|
|
|
+ if (lfree == mem)
|
|
|
+ {
|
|
|
+ lfree = pmem;
|
|
|
+ }
|
|
|
+ pmem->next = mem->next;
|
|
|
+ ((struct heap_mem *)&heap_ptr[mem->next])->prev = (rt_uint8_t *)pmem - heap_ptr;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -167,50 +171,51 @@ static void plug_holes(struct heap_mem *mem)
|
|
|
*/
|
|
|
void rt_system_heap_init(void *begin_addr, void *end_addr)
|
|
|
{
|
|
|
- struct heap_mem *mem;
|
|
|
- rt_uint32_t begin_align = RT_ALIGN((rt_uint32_t)begin_addr, RT_ALIGN_SIZE);
|
|
|
- rt_uint32_t end_align = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_ALIGN_SIZE);
|
|
|
-
|
|
|
- RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
-
|
|
|
- /* alignment addr */
|
|
|
- if ((end_align > (2 * SIZEOF_STRUCT_MEM)) &&
|
|
|
- ((end_align - 2 * SIZEOF_STRUCT_MEM) >= begin_align))
|
|
|
- {
|
|
|
- /* calculate the aligned memory size */
|
|
|
- mem_size_aligned = end_align - begin_align - 2 * SIZEOF_STRUCT_MEM;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- rt_kprintf("mem init, error begin address 0x%x, and end address 0x%x\n", (rt_uint32_t)begin_addr, (rt_uint32_t)end_addr);
|
|
|
-
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* point to begin address of heap */
|
|
|
- heap_ptr = (rt_uint8_t *)begin_align;
|
|
|
-
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM, ("mem init, heap begin address 0x%x, size %d\n",
|
|
|
+ struct heap_mem *mem;
|
|
|
+ rt_uint32_t begin_align = RT_ALIGN((rt_uint32_t)begin_addr, RT_ALIGN_SIZE);
|
|
|
+ rt_uint32_t end_align = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_ALIGN_SIZE);
|
|
|
+
|
|
|
+ RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
+
|
|
|
+ /* alignment addr */
|
|
|
+ if ((end_align > (2 * SIZEOF_STRUCT_MEM)) &&
|
|
|
+ ((end_align - 2 * SIZEOF_STRUCT_MEM) >= begin_align))
|
|
|
+ {
|
|
|
+ /* calculate the aligned memory size */
|
|
|
+ mem_size_aligned = end_align - begin_align - 2 * SIZEOF_STRUCT_MEM;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ rt_kprintf("mem init, error begin address 0x%x, and end address 0x%x\n",
|
|
|
+ (rt_uint32_t)begin_addr, (rt_uint32_t)end_addr);
|
|
|
+
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* point to begin address of heap */
|
|
|
+ heap_ptr = (rt_uint8_t *)begin_align;
|
|
|
+
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM, ("mem init, heap begin address 0x%x, size %d\n",
|
|
|
(rt_uint32_t)heap_ptr, mem_size_aligned));
|
|
|
|
|
|
- /* initialize the start of the heap */
|
|
|
- mem = (struct heap_mem *)heap_ptr;
|
|
|
- mem->magic= HEAP_MAGIC;
|
|
|
- mem->next = mem_size_aligned + SIZEOF_STRUCT_MEM;
|
|
|
- mem->prev = 0;
|
|
|
- mem->used = 0;
|
|
|
+ /* initialize the start of the heap */
|
|
|
+ mem = (struct heap_mem *)heap_ptr;
|
|
|
+ mem->magic = HEAP_MAGIC;
|
|
|
+ mem->next = mem_size_aligned + SIZEOF_STRUCT_MEM;
|
|
|
+ mem->prev = 0;
|
|
|
+ mem->used = 0;
|
|
|
|
|
|
- /* initialize the end of the heap */
|
|
|
- heap_end = (struct heap_mem *)&heap_ptr[mem->next];
|
|
|
- heap_end->magic= HEAP_MAGIC;
|
|
|
- heap_end->used = 1;
|
|
|
- heap_end->next = mem_size_aligned + SIZEOF_STRUCT_MEM;
|
|
|
- heap_end->prev = mem_size_aligned + SIZEOF_STRUCT_MEM;
|
|
|
+ /* initialize the end of the heap */
|
|
|
+ heap_end = (struct heap_mem *)&heap_ptr[mem->next];
|
|
|
+ heap_end->magic = HEAP_MAGIC;
|
|
|
+ heap_end->used = 1;
|
|
|
+ heap_end->next = mem_size_aligned + SIZEOF_STRUCT_MEM;
|
|
|
+ heap_end->prev = mem_size_aligned + SIZEOF_STRUCT_MEM;
|
|
|
|
|
|
- rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO);
|
|
|
+ rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO);
|
|
|
|
|
|
- /* initialize the lowest-free pointer to the start of the heap */
|
|
|
- lfree = (struct heap_mem *)heap_ptr;
|
|
|
+ /* initialize the lowest-free pointer to the start of the heap */
|
|
|
+ lfree = (struct heap_mem *)heap_ptr;
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -228,129 +233,132 @@ void rt_system_heap_init(void *begin_addr, void *end_addr)
|
|
|
*/
|
|
|
void *rt_malloc(rt_size_t size)
|
|
|
{
|
|
|
- rt_size_t ptr, ptr2;
|
|
|
- struct heap_mem *mem, *mem2;
|
|
|
+ rt_size_t ptr, ptr2;
|
|
|
+ struct heap_mem *mem, *mem2;
|
|
|
|
|
|
- RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
+ RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
|
|
- if (size == 0)
|
|
|
- return RT_NULL;
|
|
|
+ if (size == 0)
|
|
|
+ return RT_NULL;
|
|
|
|
|
|
- if (size != RT_ALIGN(size, RT_ALIGN_SIZE))
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d, but align to %d\n",
|
|
|
+ if (size != RT_ALIGN(size, RT_ALIGN_SIZE))
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d, but align to %d\n",
|
|
|
size, RT_ALIGN(size, RT_ALIGN_SIZE)));
|
|
|
- else
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d\n", size));
|
|
|
-
|
|
|
- /* alignment size */
|
|
|
- size = RT_ALIGN(size, RT_ALIGN_SIZE);
|
|
|
-
|
|
|
- if (size > mem_size_aligned)
|
|
|
- {
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM, ("no memory\n"));
|
|
|
-
|
|
|
- return RT_NULL;
|
|
|
- }
|
|
|
-
|
|
|
- /* every data block must be at least MIN_SIZE_ALIGNED long */
|
|
|
- if (size < MIN_SIZE_ALIGNED)
|
|
|
- size = MIN_SIZE_ALIGNED;
|
|
|
-
|
|
|
- /* take memory semaphore */
|
|
|
- rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
|
|
|
-
|
|
|
- for (ptr = (rt_uint8_t *)lfree - heap_ptr; ptr < mem_size_aligned - size;
|
|
|
- ptr = ((struct heap_mem *)&heap_ptr[ptr])->next)
|
|
|
- {
|
|
|
- mem = (struct heap_mem *)&heap_ptr[ptr];
|
|
|
-
|
|
|
- if ((!mem->used) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size)
|
|
|
- {
|
|
|
- /* mem is not used and at least perfect fit is possible:
|
|
|
- * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
|
|
|
-
|
|
|
- if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED))
|
|
|
- {
|
|
|
- /* (in addition to the above, we test if another struct heap_mem (SIZEOF_STRUCT_MEM) containing
|
|
|
- * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
|
|
|
- * -> split large block, create empty remainder,
|
|
|
- * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
|
|
|
- * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
|
|
|
- * struct heap_mem would fit in but no data between mem2 and mem2->next
|
|
|
- * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
|
|
- * region that couldn't hold data, but when mem->next gets freed,
|
|
|
- * the 2 regions would be combined, resulting in more free memory
|
|
|
- */
|
|
|
- ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
|
|
|
-
|
|
|
- /* create mem2 struct */
|
|
|
- mem2 = (struct heap_mem *)&heap_ptr[ptr2];
|
|
|
- mem2->used = 0;
|
|
|
- mem2->next = mem->next;
|
|
|
- mem2->prev = ptr;
|
|
|
-
|
|
|
- /* and insert it between mem and mem->next */
|
|
|
- mem->next = ptr2;
|
|
|
- mem->used = 1;
|
|
|
-
|
|
|
- if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)
|
|
|
- {
|
|
|
- ((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;
|
|
|
- }
|
|
|
+ else
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d\n", size));
|
|
|
+
|
|
|
+ /* alignment size */
|
|
|
+ size = RT_ALIGN(size, RT_ALIGN_SIZE);
|
|
|
+
|
|
|
+ if (size > mem_size_aligned)
|
|
|
+ {
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM, ("no memory\n"));
|
|
|
+
|
|
|
+ return RT_NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* every data block must be at least MIN_SIZE_ALIGNED long */
|
|
|
+ if (size < MIN_SIZE_ALIGNED)
|
|
|
+ size = MIN_SIZE_ALIGNED;
|
|
|
+
|
|
|
+ /* take memory semaphore */
|
|
|
+ rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
|
|
|
+
|
|
|
+ for (ptr = (rt_uint8_t *)lfree - heap_ptr;
|
|
|
+ ptr < mem_size_aligned - size;
|
|
|
+ ptr = ((struct heap_mem *)&heap_ptr[ptr])->next)
|
|
|
+ {
|
|
|
+ mem = (struct heap_mem *)&heap_ptr[ptr];
|
|
|
+
|
|
|
+ if ((!mem->used) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size)
|
|
|
+ {
|
|
|
+ /* mem is not used and at least perfect fit is possible:
|
|
|
+ * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
|
|
|
+
|
|
|
+ if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >=
|
|
|
+ (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED))
|
|
|
+ {
|
|
|
+ /* (in addition to the above, we test if another struct heap_mem (SIZEOF_STRUCT_MEM) containing
|
|
|
+ * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
|
|
|
+ * -> split large block, create empty remainder,
|
|
|
+ * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
|
|
|
+ * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
|
|
|
+ * struct heap_mem would fit in but no data between mem2 and mem2->next
|
|
|
+ * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
|
|
+ * region that couldn't hold data, but when mem->next gets freed,
|
|
|
+ * the 2 regions would be combined, resulting in more free memory
|
|
|
+ */
|
|
|
+ ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
|
|
|
+
|
|
|
+ /* create mem2 struct */
|
|
|
+ mem2 = (struct heap_mem *)&heap_ptr[ptr2];
|
|
|
+ mem2->used = 0;
|
|
|
+ mem2->next = mem->next;
|
|
|
+ mem2->prev = ptr;
|
|
|
+
|
|
|
+ /* and insert it between mem and mem->next */
|
|
|
+ mem->next = ptr2;
|
|
|
+ mem->used = 1;
|
|
|
+
|
|
|
+ if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)
|
|
|
+ {
|
|
|
+ ((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;
|
|
|
+ }
|
|
|
#ifdef RT_MEM_STATS
|
|
|
- used_mem += (size + SIZEOF_STRUCT_MEM);
|
|
|
- if (max_mem < used_mem)
|
|
|
- max_mem = used_mem;
|
|
|
+ used_mem += (size + SIZEOF_STRUCT_MEM);
|
|
|
+ if (max_mem < used_mem)
|
|
|
+ max_mem = used_mem;
|
|
|
#endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
|
|
|
- * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
|
|
|
- * take care of this).
|
|
|
- * -> near fit or excact fit: do not split, no mem2 creation
|
|
|
- * also can't move mem->next directly behind mem, since mem->next
|
|
|
- * will always be used at this point!
|
|
|
- */
|
|
|
- mem->used = 1;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
|
|
|
+ * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
|
|
|
+ * take care of this).
|
|
|
+ * -> near fit or excact fit: do not split, no mem2 creation
|
|
|
+ * also can't move mem->next directly behind mem, since mem->next
|
|
|
+ * will always be used at this point!
|
|
|
+ */
|
|
|
+ mem->used = 1;
|
|
|
#ifdef RT_MEM_STATS
|
|
|
- used_mem += mem->next - ((rt_uint8_t*)mem - heap_ptr);
|
|
|
- if (max_mem < used_mem)
|
|
|
- max_mem = used_mem;
|
|
|
+ used_mem += mem->next - ((rt_uint8_t*)mem - heap_ptr);
|
|
|
+ if (max_mem < used_mem)
|
|
|
+ max_mem = used_mem;
|
|
|
#endif
|
|
|
- }
|
|
|
- /* set memory block magic */
|
|
|
- mem->magic = HEAP_MAGIC;
|
|
|
+ }
|
|
|
+ /* set memory block magic */
|
|
|
+ mem->magic = HEAP_MAGIC;
|
|
|
|
|
|
- if (mem == lfree)
|
|
|
- {
|
|
|
- /* Find next free block after mem and update lowest free pointer */
|
|
|
- while (lfree->used && lfree != heap_end)
|
|
|
- lfree = (struct heap_mem *)&heap_ptr[lfree->next];
|
|
|
+ if (mem == lfree)
|
|
|
+ {
|
|
|
+ /* Find next free block after mem and update lowest free pointer */
|
|
|
+ while (lfree->used && lfree != heap_end)
|
|
|
+ lfree = (struct heap_mem *)&heap_ptr[lfree->next];
|
|
|
|
|
|
- RT_ASSERT(((lfree == heap_end) || (!lfree->used)));
|
|
|
- }
|
|
|
+ RT_ASSERT(((lfree == heap_end) || (!lfree->used)));
|
|
|
+ }
|
|
|
|
|
|
- rt_sem_release(&heap_sem);
|
|
|
- RT_ASSERT((rt_uint32_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_uint32_t)heap_end);
|
|
|
- RT_ASSERT((rt_uint32_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0);
|
|
|
- RT_ASSERT((((rt_uint32_t)mem) & (RT_ALIGN_SIZE-1)) == 0);
|
|
|
+ rt_sem_release(&heap_sem);
|
|
|
+ RT_ASSERT((rt_uint32_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_uint32_t)heap_end);
|
|
|
+ RT_ASSERT((rt_uint32_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0);
|
|
|
+ RT_ASSERT((((rt_uint32_t)mem) & (RT_ALIGN_SIZE-1)) == 0);
|
|
|
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM,
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM,
|
|
|
("allocate memory at 0x%x, size: %d\n",
|
|
|
(rt_uint32_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM),
|
|
|
(rt_uint32_t)(mem->next - ((rt_uint8_t *)mem - heap_ptr))));
|
|
|
|
|
|
- RT_OBJECT_HOOK_CALL(rt_malloc_hook, (((void*)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM)), size));
|
|
|
-
|
|
|
- /* return the memory data except mem struct */
|
|
|
- return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM;
|
|
|
- }
|
|
|
- }
|
|
|
+ RT_OBJECT_HOOK_CALL(rt_malloc_hook,
|
|
|
+ (((void *)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM)), size));
|
|
|
|
|
|
- rt_sem_release(&heap_sem);
|
|
|
-
|
|
|
- return RT_NULL;
|
|
|
+ /* return the memory data except mem struct */
|
|
|
+ return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ rt_sem_release(&heap_sem);
|
|
|
+
|
|
|
+ return RT_NULL;
|
|
|
}
|
|
|
RTM_EXPORT(rt_malloc);
|
|
|
|
|
@@ -364,85 +372,85 @@ RTM_EXPORT(rt_malloc);
|
|
|
*/
|
|
|
void *rt_realloc(void *rmem, rt_size_t newsize)
|
|
|
{
|
|
|
- rt_size_t size;
|
|
|
- rt_size_t ptr, ptr2;
|
|
|
- struct heap_mem *mem, *mem2;
|
|
|
- void *nmem;
|
|
|
+ rt_size_t size;
|
|
|
+ rt_size_t ptr, ptr2;
|
|
|
+ struct heap_mem *mem, *mem2;
|
|
|
+ void *nmem;
|
|
|
|
|
|
- RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
+ RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
|
|
- /* alignment size */
|
|
|
- newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
|
|
|
- if (newsize > mem_size_aligned)
|
|
|
- {
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n"));
|
|
|
+ /* alignment size */
|
|
|
+ newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
|
|
|
+ if (newsize > mem_size_aligned)
|
|
|
+ {
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n"));
|
|
|
|
|
|
- return RT_NULL;
|
|
|
- }
|
|
|
+ return RT_NULL;
|
|
|
+ }
|
|
|
|
|
|
- /* allocate a new memory block */
|
|
|
- if (rmem == RT_NULL)
|
|
|
- return rt_malloc(newsize);
|
|
|
+ /* allocate a new memory block */
|
|
|
+ if (rmem == RT_NULL)
|
|
|
+ return rt_malloc(newsize);
|
|
|
|
|
|
- rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
|
|
|
+ rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
|
|
|
|
|
|
- if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr ||
|
|
|
- (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
|
|
|
- {
|
|
|
- /* illegal memory */
|
|
|
- rt_sem_release(&heap_sem);
|
|
|
+ if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr ||
|
|
|
+ (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
|
|
|
+ {
|
|
|
+ /* illegal memory */
|
|
|
+ rt_sem_release(&heap_sem);
|
|
|
|
|
|
- return rmem;
|
|
|
- }
|
|
|
+ return rmem;
|
|
|
+ }
|
|
|
|
|
|
- mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
|
|
|
+ mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
|
|
|
|
|
|
- ptr = (rt_uint8_t *)mem - heap_ptr;
|
|
|
- size = mem->next - ptr - SIZEOF_STRUCT_MEM;
|
|
|
- if (size == newsize)
|
|
|
- {
|
|
|
- /* the size is the same as */
|
|
|
- rt_sem_release(&heap_sem);
|
|
|
+ ptr = (rt_uint8_t *)mem - heap_ptr;
|
|
|
+ size = mem->next - ptr - SIZEOF_STRUCT_MEM;
|
|
|
+ if (size == newsize)
|
|
|
+ {
|
|
|
+ /* the size is the same as */
|
|
|
+ rt_sem_release(&heap_sem);
|
|
|
|
|
|
- return rmem;
|
|
|
- }
|
|
|
+ return rmem;
|
|
|
+ }
|
|
|
|
|
|
- if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)
|
|
|
- {
|
|
|
- /* split memory block */
|
|
|
+ if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)
|
|
|
+ {
|
|
|
+ /* split memory block */
|
|
|
#ifdef RT_MEM_STATS
|
|
|
- used_mem -= (size - newsize);
|
|
|
+ used_mem -= (size - newsize);
|
|
|
#endif
|
|
|
|
|
|
- ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
|
|
|
- mem2 = (struct heap_mem *)&heap_ptr[ptr2];
|
|
|
- mem2->magic= HEAP_MAGIC;
|
|
|
- mem2->used = 0;
|
|
|
- mem2->next = mem->next;
|
|
|
- mem2->prev = ptr;
|
|
|
- mem->next = ptr2;
|
|
|
- if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)
|
|
|
- {
|
|
|
- ((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;
|
|
|
- }
|
|
|
-
|
|
|
- plug_holes(mem2);
|
|
|
-
|
|
|
- rt_sem_release(&heap_sem);
|
|
|
-
|
|
|
- return rmem;
|
|
|
- }
|
|
|
- rt_sem_release(&heap_sem);
|
|
|
-
|
|
|
- /* expand memory */
|
|
|
- nmem = rt_malloc(newsize);
|
|
|
- if (nmem != RT_NULL) /* check memory */
|
|
|
- {
|
|
|
- rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
|
|
|
- rt_free(rmem);
|
|
|
- }
|
|
|
-
|
|
|
- return nmem;
|
|
|
+ ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
|
|
|
+ mem2 = (struct heap_mem *)&heap_ptr[ptr2];
|
|
|
+ mem2->magic= HEAP_MAGIC;
|
|
|
+ mem2->used = 0;
|
|
|
+ mem2->next = mem->next;
|
|
|
+ mem2->prev = ptr;
|
|
|
+ mem->next = ptr2;
|
|
|
+ if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)
|
|
|
+ {
|
|
|
+ ((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;
|
|
|
+ }
|
|
|
+
|
|
|
+ plug_holes(mem2);
|
|
|
+
|
|
|
+ rt_sem_release(&heap_sem);
|
|
|
+
|
|
|
+ return rmem;
|
|
|
+ }
|
|
|
+ rt_sem_release(&heap_sem);
|
|
|
+
|
|
|
+ /* expand memory */
|
|
|
+ nmem = rt_malloc(newsize);
|
|
|
+ if (nmem != RT_NULL) /* check memory */
|
|
|
+ {
|
|
|
+ rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
|
|
|
+ rt_free(rmem);
|
|
|
+ }
|
|
|
+
|
|
|
+ return nmem;
|
|
|
}
|
|
|
RTM_EXPORT(rt_realloc);
|
|
|
|
|
@@ -460,98 +468,105 @@ RTM_EXPORT(rt_realloc);
|
|
|
*/
|
|
|
void *rt_calloc(rt_size_t count, rt_size_t size)
|
|
|
{
|
|
|
- void *p;
|
|
|
+ void *p;
|
|
|
|
|
|
- RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
+ RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
|
|
- /* allocate 'count' objects of size 'size' */
|
|
|
- p = rt_malloc(count * size);
|
|
|
+ /* allocate 'count' objects of size 'size' */
|
|
|
+ p = rt_malloc(count * size);
|
|
|
|
|
|
- /* zero the memory */
|
|
|
- if (p)
|
|
|
- rt_memset(p, 0, count * size);
|
|
|
+ /* zero the memory */
|
|
|
+ if (p)
|
|
|
+ rt_memset(p, 0, count * size);
|
|
|
|
|
|
- return p;
|
|
|
+ return p;
|
|
|
}
|
|
|
RTM_EXPORT(rt_calloc);
|
|
|
|
|
|
/**
|
|
|
- * This function will release the previously allocated memory block by rt_malloc.
|
|
|
- * The released memory block is taken back to system heap.
|
|
|
+ * This function will release the previously allocated memory block by
|
|
|
+ * rt_malloc. The released memory block is taken back to system heap.
|
|
|
*
|
|
|
* @param rmem the address of memory which will be released
|
|
|
*/
|
|
|
void rt_free(void *rmem)
|
|
|
{
|
|
|
- struct heap_mem *mem;
|
|
|
+ struct heap_mem *mem;
|
|
|
|
|
|
- RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
+ RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
|
|
- if (rmem == RT_NULL)
|
|
|
- return;
|
|
|
- RT_ASSERT((((rt_uint32_t)rmem) & (RT_ALIGN_SIZE-1)) == 0);
|
|
|
- RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)heap_ptr &&
|
|
|
- (rt_uint8_t *)rmem < (rt_uint8_t *)heap_end);
|
|
|
+ if (rmem == RT_NULL)
|
|
|
+ return;
|
|
|
+ RT_ASSERT((((rt_uint32_t)rmem) & (RT_ALIGN_SIZE-1)) == 0);
|
|
|
+ RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)heap_ptr &&
|
|
|
+ (rt_uint8_t *)rmem < (rt_uint8_t *)heap_end);
|
|
|
|
|
|
- RT_OBJECT_HOOK_CALL(rt_free_hook, (rmem));
|
|
|
+ RT_OBJECT_HOOK_CALL(rt_free_hook, (rmem));
|
|
|
|
|
|
- if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr || (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
|
|
|
- {
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM, ("illegal memory\n"));
|
|
|
+ if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr ||
|
|
|
+ (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
|
|
|
+ {
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM, ("illegal memory\n"));
|
|
|
|
|
|
- return;
|
|
|
- }
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
- /* Get the corresponding struct heap_mem ... */
|
|
|
- mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
|
|
|
+ /* Get the corresponding struct heap_mem ... */
|
|
|
+ mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
|
|
|
|
|
|
- RT_DEBUG_LOG(RT_DEBUG_MEM,
|
|
|
+ RT_DEBUG_LOG(RT_DEBUG_MEM,
|
|
|
("release memory 0x%x, size: %d\n",
|
|
|
(rt_uint32_t)rmem,
|
|
|
(rt_uint32_t)(mem->next - ((rt_uint8_t *)mem - heap_ptr))));
|
|
|
|
|
|
|
|
|
- /* protect the heap from concurrent access */
|
|
|
- rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
|
|
|
+ /* protect the heap from concurrent access */
|
|
|
+ rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
|
|
|
|
|
|
- /* ... which has to be in a used state ... */
|
|
|
- RT_ASSERT(mem->used);
|
|
|
- RT_ASSERT(mem->magic == HEAP_MAGIC);
|
|
|
- /* ... and is now unused. */
|
|
|
- mem->used = 0;
|
|
|
- mem->magic = 0;
|
|
|
+ /* ... which has to be in a used state ... */
|
|
|
+ RT_ASSERT(mem->used);
|
|
|
+ RT_ASSERT(mem->magic == HEAP_MAGIC);
|
|
|
+ /* ... and is now unused. */
|
|
|
+ mem->used = 0;
|
|
|
+ mem->magic = 0;
|
|
|
|
|
|
- if (mem < lfree)
|
|
|
- {
|
|
|
- /* the newly freed struct is now the lowest */
|
|
|
- lfree = mem;
|
|
|
- }
|
|
|
+ if (mem < lfree)
|
|
|
+ {
|
|
|
+ /* the newly freed struct is now the lowest */
|
|
|
+ lfree = mem;
|
|
|
+ }
|
|
|
|
|
|
#ifdef RT_MEM_STATS
|
|
|
- used_mem -= (mem->next - ((rt_uint8_t*)mem - heap_ptr));
|
|
|
+ used_mem -= (mem->next - ((rt_uint8_t*)mem - heap_ptr));
|
|
|
#endif
|
|
|
|
|
|
- /* finally, see if prev or next are free also */
|
|
|
- plug_holes(mem);
|
|
|
- rt_sem_release(&heap_sem);
|
|
|
+ /* finally, see if prev or next are free also */
|
|
|
+ plug_holes(mem);
|
|
|
+ rt_sem_release(&heap_sem);
|
|
|
}
|
|
|
RTM_EXPORT(rt_free);
|
|
|
|
|
|
#ifdef RT_MEM_STATS
|
|
|
-void rt_memory_info(rt_uint32_t *total, rt_uint32_t *used, rt_uint32_t *max_used)
|
|
|
+void rt_memory_info(rt_uint32_t *total,
|
|
|
+ rt_uint32_t *used,
|
|
|
+ rt_uint32_t *max_used)
|
|
|
{
|
|
|
- if (total != RT_NULL) *total = mem_size_aligned;
|
|
|
- if (used != RT_NULL) *used = used_mem;
|
|
|
- if (max_used != RT_NULL) *max_used = max_mem;
|
|
|
+ if (total != RT_NULL)
|
|
|
+ *total = mem_size_aligned;
|
|
|
+ if (used != RT_NULL)
|
|
|
+ *used = used_mem;
|
|
|
+ if (max_used != RT_NULL)
|
|
|
+ *max_used = max_mem;
|
|
|
}
|
|
|
|
|
|
#ifdef RT_USING_FINSH
|
|
|
#include <finsh.h>
|
|
|
+
|
|
|
void list_mem(void)
|
|
|
{
|
|
|
- rt_kprintf("total memory: %d\n", mem_size_aligned);
|
|
|
- rt_kprintf("used memory : %d\n", used_mem);
|
|
|
- rt_kprintf("maximum allocated memory: %d\n", max_mem);
|
|
|
+ rt_kprintf("total memory: %d\n", mem_size_aligned);
|
|
|
+ rt_kprintf("used memory : %d\n", used_mem);
|
|
|
+ rt_kprintf("maximum allocated memory: %d\n", max_mem);
|
|
|
}
|
|
|
FINSH_FUNCTION_EXPORT(list_mem, list memory usage information)
|
|
|
#endif
|