浏览代码

remove math code for newlib

Newlib already have optimized and full featured math implementation. To
use it, one should add:

    env['LIBS'] = ['m']

or equivalent to the SConstruct.
Grissiom 12 年之前
父节点
当前提交
3ef523714f
共有 1 个文件被更改,包括 0 次插入260 次删除
  1. 0 260
      components/libc/newlib/math.c

+ 0 - 260
components/libc/newlib/math.c

@@ -1,260 +0,0 @@
-#include <math.h>
-
-/*
- * COPYRIGHT:        See COPYING in the top level directory
- * PROJECT:          ReactOS CRT
- * FILE:             lib/crt/math/cos.c
- * PURPOSE:          Generic C Implementation of cos
- * PROGRAMMER:       Timo Kreuzer (timo.kreuzer@reactos.org)
- */
-
-#define PRECISION 9
-
-static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
-static double cos_sign_tbl[] = {1,-1,-1,1};
-
-static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
-static double sin_sign_tbl[] = {1,-1,-1,1};
-
-double sin(double x)
-{
-    int quadrant;
-    double x2, result;
-
-    /* Calculate the quadrant */
-    quadrant = x * (2./M_PI);
-
-    /* Get offset inside quadrant */
-    x = x - quadrant * (M_PI/2.);
-
-    /* Normalize quadrant to [0..3] */
-    quadrant = (quadrant - 1) & 0x3;
-
-    /* Fixup value for the generic function */
-    x += sin_off_tbl[quadrant];
-
-    /* Calculate the negative of the square of x */
-    x2 = - (x * x);
-
-    /* This is an unrolled taylor series using <PRECISION> iterations
-     * Example with 4 iterations:
-     * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
-     * To save multiplications and to keep the precision high, it's performed
-     * like this:
-     * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
-     */
-
-    /* Start with 0, compiler will optimize this away */
-    result = 0;
-
-#if (PRECISION >= 10)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
-    result *= x2;
-#endif
-#if (PRECISION >= 9)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
-    result *= x2;
-#endif
-#if (PRECISION >= 8)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
-    result *= x2;
-#endif
-#if (PRECISION >= 7)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
-    result *= x2;
-#endif
-#if (PRECISION >= 6)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
-    result *= x2;
-#endif
-#if (PRECISION >= 5)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10);
-    result *= x2;
-#endif
-    result += 1./(1.*2*3*4*5*6*7*8);
-    result *= x2;
-
-    result += 1./(1.*2*3*4*5*6);
-    result *= x2;
-
-    result += 1./(1.*2*3*4);
-    result *= x2;
-
-    result += 1./(1.*2);
-    result *= x2;
-
-    result += 1;
-
-    /* Apply correct sign */
-    result *= sin_sign_tbl[quadrant];
-
-    return result;
-}
-
-double cos(double x)
-{
-    int quadrant;
-    double x2, result;
-
-    /* Calculate the quadrant */
-    quadrant = x * (2./M_PI);
-
-    /* Get offset inside quadrant */
-    x = x - quadrant * (M_PI/2.);
-
-    /* Normalize quadrant to [0..3] */
-    quadrant = quadrant & 0x3;
-
-    /* Fixup value for the generic function */
-    x += cos_off_tbl[quadrant];
-
-    /* Calculate the negative of the square of x */
-    x2 = - (x * x);
-
-    /* This is an unrolled taylor series using <PRECISION> iterations
-     * Example with 4 iterations:
-     * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
-     * To save multiplications and to keep the precision high, it's performed
-     * like this:
-     * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
-     */
-
-    /* Start with 0, compiler will optimize this away */
-    result = 0;
-
-#if (PRECISION >= 10)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
-    result *= x2;
-#endif
-#if (PRECISION >= 9)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
-    result *= x2;
-#endif
-#if (PRECISION >= 8)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
-    result *= x2;
-#endif
-#if (PRECISION >= 7)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
-    result *= x2;
-#endif
-#if (PRECISION >= 6)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
-    result *= x2;
-#endif
-#if (PRECISION >= 5)
-    result += 1./(1.*2*3*4*5*6*7*8*9*10);
-    result *= x2;
-#endif
-    result += 1./(1.*2*3*4*5*6*7*8);
-    result *= x2;
-
-    result += 1./(1.*2*3*4*5*6);
-    result *= x2;
-
-    result += 1./(1.*2*3*4);
-    result *= x2;
-
-    result += 1./(1.*2);
-    result *= x2;
-
-    result += 1;
-
-    /* Apply correct sign */
-    result *= cos_sign_tbl[quadrant];
-
-    return result;
-}
-
-static const int N = 100;
-
-double coef(int n)
-{
- 	double t;
-
-	if (n == 0) 
-	{
-		return 0;
-	}
-
- 	t = 1.0/n;
-
- 	if (n%2 == 0) 
-	{
-		t = -t;
-	}
-
- 	return t;
-}
-
-double horner(double x)
-{
-	double u = coef(N);
- 	int i;
-
- 	for(i=N-1; i>=0; i--)
-	{
-  		u = u*x + coef(i);
-	}
-
- 	return u;
-}
-
-double sqrt(double b)
-{
- 	double x = 1;
-	int step = 0;
-
- 	while ((x*x-b<-0.000000000000001 || x*x-b>0.000000000000001) && step<50)
- 	{
-		x = (b/x+x)/2.0;
-		step++;
-	}
- 	return x;
-}
-
-double ln(double x)
-{
-	int i;
-
- 	if (x > 1.5)
- 	{
-  		for(i=0; x>1.25; i++)
-		{
-   			x = sqrt(x);
-		}
-  		return (1<<i)*horner(x-1);
- 	}
- 	else if (x<0.7 && x>0)
- 	{
-  		for(i=0; x<0.7; i++)
-		{
-   			x = sqrt(x);
-		}
-  		return (1<<i)*horner(x-1);
- 	}
- 	else if(x > 0)
-	{
-  		return horner(x-1);
-	}
-}
-
-double exp(double x)
-{
-	double sum = 1;
- 	int i;
-
- 	for(i=N; i>0; i--)
- 	{ 
-	  	sum /= i;
-	  	sum *= x;
-	  	sum += 1;
- 	}
- 	return sum;
-}
-
-double pow(double m, double n)
-{
-	return exp(n*ln(m));
-}
-