Browse Source

add more thread example and Chinese comments.

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@519 bbd45198-f89e-11dd-88c7-29a3b14d5316
bernard.xiong 15 years ago
parent
commit
911d179125

+ 4 - 0
examples/kernel/SConscript

@@ -9,6 +9,10 @@ thread_same_priority.c
 thread_static_simple.c
 thread_dynamic_simple.c
 thread_delete.c
+thread_detach.c
+thread_yield.c
+thread_suspend.c
+thread_resume.c
 semaphore_static.c
 semaphore_dynamic.c
 semaphore_priority.c

+ 37 - 8
examples/kernel/thread_delete.c

@@ -1,43 +1,72 @@
+/*
+ * 程序清单:删除线程
+ *
+ * 这个例子会创建两个线程,在其中一个线程中删除另外一个线程。
+ */
 #include <rtthread.h>
 #include "tc_comm.h"
 
 /*
- * This is an example for dynamic thread
+ * 线程删除(rt_thread_delete)函数仅适合于动态线程,为了在一个线程
+ * 中访问另一个线程的控制块,所以把线程块指针声明成全局类型以供全
+ * 局访问
  */
 static rt_thread_t tid1 = RT_NULL, tid2 = RT_NULL;
+/* 线程1的入口函数 */
 static void thread1_entry(void* parameter)
 {
 	rt_uint32_t count = 0;
 
 	while (1)
 	{
+		/* 线程1采用低优先级运行,一直打印计数值 */
 		rt_kprintf("thread count: %d\n", count ++);
 	}
 }
 
+/* 线程2的入口函数 */
 static void thread2_entry(void* parameter)
 {
+	/* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
+
+	/* 线程2启动后先睡眠10个OS Tick */
 	rt_thread_delay(10);
+
+	/*
+	 * 线程2唤醒后直接删除线程1,删除线程1后,线程1自动脱离就绪线程
+	 * 队列
+	 */
 	rt_thread_delete(tid1);
 
-	/* delay thread2 to switch to idle thread */
+	/*
+	 * 线程2继续休眠10个OS Tick然后退出,线程2休眠后应切换到idle线程
+	 * idle线程将执行真正的线程1控制块和线程栈的删除
+	 */
 	rt_thread_delay(10);
+
+	/*
+	 * 线程2运行结束后也将自动被删除(线程控制块和线程栈依然在idle线
+	 * 程中释放)
+	 */
 }
 
+/* 线程删除示例的初始化 */
 int thread_delete_init()
 {
-	tid1 = rt_thread_create("t1",
-		thread1_entry, (void*)1,
+	/* 创建线程1 */
+	tid1 = rt_thread_create("t1", /* 线程1的名称是t1 */
+		thread1_entry, RT_NULL,   /* 入口时thread1_entry,参数是RT_NULL */
 		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid1 != RT_NULL)
+	if (tid1 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
 		rt_thread_startup(tid1);
 	else
 		tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	tid2 = rt_thread_create("t2",
-		thread2_entry, (void*)2,
+	/* 创建线程1 */
+	tid2 = rt_thread_create("t2", /* 线程1的名称是t2 */
+		thread2_entry, RT_NULL,   /* 入口时thread2_entry,参数是RT_NULL */
 		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
-	if (tid2 != RT_NULL)
+	if (tid2 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
 		rt_thread_startup(tid2);
 	else
 		tc_stat(TC_STAT_END | TC_STAT_FAILED);

+ 118 - 0
examples/kernel/thread_detach.c

@@ -0,0 +1,118 @@
+/*
+ * 程序清单:线程脱离
+ *
+ * 这个例子会创建两个线程,在其中一个线程中执行对另一个线程的脱离。
+ */
+#include <rtthread.h>
+#include "tc_comm.h"
+
+/* 线程1控制块 */
+static struct rt_thread thread1;
+/* 线程1栈 */
+static rt_uint8_t thread1_stack[THREAD_STACK_SIZE];
+/* 线程2控制块 */
+static struct rt_thread thread2;
+/* 线程2栈 */
+static rt_uint8_t thread2_stack[THREAD_STACK_SIZE];
+
+/* 线程1入口 */
+static void thread1_entry(void* parameter)
+{
+	rt_uint32_t count = 0;
+
+	while (1)
+	{
+		/* 线程1采用低优先级运行,一直打印计数值 */
+		rt_kprintf("thread count: %d\n", count ++);
+	}
+}
+
+/* 线程2入口 */
+static void thread2_entry(void* parameter)
+{
+	/* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
+
+	/* 线程2启动后先睡眠10个OS Tick */
+	rt_thread_delay(10);
+
+	/*
+	 * 线程2唤醒后直接执行线程1脱离,线程1将从就绪线程队列中删除
+	 */
+	rt_thread_detach(&thread1);
+
+	/*
+	 * 线程2继续休眠10个OS Tick然后退出
+	 */
+	rt_thread_delay(10);
+
+	/*
+	 * 线程2运行结束后也将自动被从就绪队列中删除,并脱离线程队列
+	 */
+}
+
+int thread_detach_init()
+{
+	rt_err_t result;
+
+	/* 初始化线程1 */
+	result = rt_thread_init(&thread1, "t1", /* 线程名:t1 */
+		thread1_entry, RT_NULL, /* 线程的入口是thread1_entry,入口参数是RT_NULL*/
+		&thread1_stack[0], sizeof(thread1_stack), /* 线程栈是thread1_stack */
+		THREAD_PRIORITY, 10);
+	if (result == RT_EOK) /* 如果返回正确,启动线程1 */
+		rt_thread_startup(&thread1);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	/* 初始化线程2 */
+	result = rt_thread_init(&thread2, "t2", /* 线程名:t2 */
+		thread2_entry, RT_NULL, /* 线程的入口是thread2_entry,入口参数是RT_NULL*/
+		&thread2_stack[0], sizeof(thread2_stack), /* 线程栈是thread2_stack */
+		THREAD_PRIORITY - 1, 10);
+	if (result == RT_EOK) /* 如果返回正确,启动线程2 */
+		rt_thread_startup(&thread2);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	return 0;
+}
+
+#ifdef RT_USING_TC
+static void _tc_cleanup()
+{
+	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+	rt_enter_critical();
+
+	/* 执行线程脱离 */
+	if (thread1.stat != RT_THREAD_CLOSE)
+		rt_thread_detach(&thread1);
+	if (thread2.stat != RT_THREAD_CLOSE)
+		rt_thread_detach(&thread2);
+
+	/* 调度器解锁 */
+	rt_exit_critical();
+
+	/* 设置TestCase状态 */
+	tc_done(TC_STAT_PASSED);
+}
+
+int _tc_thread_detach()
+{
+	/* 设置TestCase清理回调函数 */
+	tc_cleanup(_tc_cleanup);
+	thread_detach_init();
+
+	/* 返回TestCase运行的最长时间 */
+	return 100;
+}
+/* 输出函数命令到finsh shell中 */
+FINSH_FUNCTION_EXPORT(_tc_thread_detach, a static thread example);
+#else
+/* 用户应用入口 */
+int rt_application_init()
+{
+	thread_detach_init();
+
+	return 0;
+}
+#endif

+ 28 - 14
examples/kernel/thread_dynamic_simple.c

@@ -1,35 +1,45 @@
+/*
+ * 程序清单:动态线程
+ *
+ * 这个程序会初始化2个动态线程,它们拥有共同的入口函数,但参数不相同
+ */
 #include <rtthread.h>
 #include "tc_comm.h"
 
-/*
- * This is an example for dynamic thread
- */
-static rt_thread_t tid1 = RT_NULL, tid2 = RT_NULL;
+/* 指向线程控制块的指针 */
+static rt_thread_t tid1 = RT_NULL;
+static rt_thread_t tid2 = RT_NULL;
+/* 线程入口 */
 static void thread_entry(void* parameter)
 {
 	rt_uint32_t count = 0;
-	rt_uint32_t no = (rt_uint32_t) parameter;
+	rt_uint32_t no = (rt_uint32_t) parameter; /* 获得正确的入口参数 */
 
 	while (1)
 	{
+		/* 打印线程计数值输出 */
 		rt_kprintf("thread%d count: %d\n", no, count ++);
+
+		/* 休眠10个OS Tick */
 		rt_thread_delay(10);
 	}
 }
 
 int thread_dynamic_simple_init()
 {
-	tid1 = rt_thread_create("t1",
-		thread_entry, (void*)1,
+	/* 创建线程1 */
+	tid1 = rt_thread_create("thread",
+		thread_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
 		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
 	if (tid1 != RT_NULL)
 		rt_thread_startup(tid1);
 	else
 		tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	tid2 = rt_thread_create("t2",
-		thread_entry, (void*)2,
-		THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
+	/* 创建线程2 */
+	tid2 = rt_thread_create("thread",
+		thread_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
+		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
 	if (tid2 != RT_NULL)
 		rt_thread_startup(tid2);
 	else
@@ -41,31 +51,35 @@ int thread_dynamic_simple_init()
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* lock scheduler */
+	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
 	rt_enter_critical();
 
-	/* delete thread */
+	/* 删除线程 */
 	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
 		rt_thread_delete(tid1);
 	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
 		rt_thread_delete(tid2);
 
-	/* unlock scheduler */
+	/* 调度器解锁 */
 	rt_exit_critical();
 
+	/* 设置TestCase状态 */
 	tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_dynamic_simple()
 {
-	/* set tc cleanup */
+	/* 设置TestCase清理回调函数 */
 	tc_cleanup(_tc_cleanup);
 	thread_dynamic_simple_init();
 
+	/* 返回TestCase运行的最长时间 */
 	return 100;
 }
+/* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_dynamic_simple, a dynamic thread example);
 #else
+/* 用户应用入口 */
 int rt_application_init()
 {
 	thread_dynamic_simple_init();

+ 105 - 0
examples/kernel/thread_resume.c

@@ -0,0 +1,105 @@
+/*
+ * 程序清单:唤醒线程
+ *
+ * 这个例子中将创建两个动态线程,低优先级线程将挂起自身,然后
+ * 高优先级线程将在一定时刻后唤醒低优先级线程。
+ */
+#include <rtthread.h>
+#include "tc_comm.h"
+
+/* 指向线程控制块的指针 */
+static rt_thread_t tid1 = RT_NULL;
+static rt_thread_t tid2 = RT_NULL;
+/* 线程1入口 */
+static void thread1_entry(void* parameter)
+{
+	/* 低优先级线程1开始运行 */
+	rt_kprintf("thread1 startup%d\n");
+
+	/* 挂起自身 */
+	rt_kprintf("suspend thread self\n");
+	rt_thread_suspend(tid1);
+	/* 主动执行线程调度 */
+	rt_schedule();
+
+	/* 当线程1被唤醒时 */
+	rt_kprintf("thread1 resumed\n");
+}
+
+/* 线程2入口 */
+static void thread2_entry(void* parameter)
+{
+	/* 延时10个OS Tick */
+	rt_thread_delay(10);
+
+	/* 唤醒线程1 */
+	rt_thread_resume(tid1);
+
+	/* 延时10个OS Tick */
+	rt_thread_delay(10);
+
+	/* 线程2自动退出 */
+}
+
+int thread_resume_init()
+{
+	/* 创建线程1 */
+	tid1 = rt_thread_create("thread",
+		thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
+		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+	if (tid1 != RT_NULL)
+		rt_thread_startup(tid1);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	/* 创建线程2 */
+	tid2 = rt_thread_create("thread",
+		thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
+		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+	if (tid2 != RT_NULL)
+		rt_thread_startup(tid2);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	return 0;
+}
+
+#ifdef RT_USING_TC
+static void _tc_cleanup()
+{
+	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+	rt_enter_critical();
+
+	/* 删除线程 */
+	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
+		rt_thread_delete(tid1);
+	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
+		rt_thread_delete(tid2);
+
+	/* 调度器解锁 */
+	rt_exit_critical();
+
+	/* 设置TestCase状态 */
+	tc_done(TC_STAT_PASSED);
+}
+
+int _tc_thread_resume()
+{
+	/* 设置TestCase清理回调函数 */
+	tc_cleanup(_tc_cleanup);
+	thread_resume_init();
+
+	/* 返回TestCase运行的最长时间 */
+	return 100;
+}
+/* 输出函数命令到finsh shell中 */
+FINSH_FUNCTION_EXPORT(_tc_thread_resume, a thread resume example);
+#else
+/* 用户应用入口 */
+int rt_application_init()
+{
+	thread_resume_init();
+
+	return 0;
+}
+#endif

+ 39 - 23
examples/kernel/thread_static_simple.c

@@ -1,78 +1,95 @@
+/*
+ * 程序清单:静态线程
+ *
+ * 这个程序会初始化2个静态线程,它们拥有共同的入口函数,但参数不相同
+ */
 #include <rtthread.h>
 #include "tc_comm.h"
 
-/*
- * This is an example for static thread
- */
+/* 线程1控制块 */
 static struct rt_thread thread1;
+/* 线程1栈 */
+static rt_uint8_t thread1_stack[THREAD_STACK_SIZE];
+/* 线程2控制块 */
 static struct rt_thread thread2;
-static char thread1_stack[THREAD_STACK_SIZE];
-static char thread2_stack[THREAD_STACK_SIZE];
+/* 线程2栈 */
+static rt_uint8_t thread2_stack[THREAD_STACK_SIZE];
 
+/* 线程入口 */
 static void thread_entry(void* parameter)
 {
 	rt_uint32_t count = 0;
-	rt_uint32_t no = (rt_uint32_t) parameter;
+	rt_uint32_t no = (rt_uint32_t) parameter; /* 获得正确的入口参数 */
 
 	while (1)
 	{
+		/* 打印线程计数值输出 */
 		rt_kprintf("thread%d count: %d\n", no, count ++);
+
+		/* 休眠10个OS Tick */
 		rt_thread_delay(10);
 	}
 }
 
-rt_err_t thread_static_simple_init()
+int thread_static_simple_init()
 {
 	rt_err_t result;
 
-	result = rt_thread_init(&thread1,
-		"t1",
-		thread_entry, (void*)1,
-		&thread1_stack[0], sizeof(thread1_stack),
+	/* 初始化线程1 */
+	result = rt_thread_init(&thread1, "t1", /* 线程名:t1 */
+		thread_entry, (void*)1, /* 线程的入口是thread_entry,入口参数是1 */
+		&thread1_stack[0], sizeof(thread1_stack), /* 线程栈是thread1_stack */
 		THREAD_PRIORITY, 10);
-	if (result == RT_EOK)
+	if (result == RT_EOK) /* 如果返回正确,启动线程1 */
 		rt_thread_startup(&thread1);
 	else
 		tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	result = rt_thread_init(&thread2,
-		"t2",
-		thread_entry, (void*)2,
-		&thread2_stack[0], sizeof(thread2_stack),
+	/* 初始化线程2 */
+	result = rt_thread_init(&thread2, "t2", /* 线程名:t2 */
+		thread_entry, RT_NULL, /* 线程的入口是thread_entry,入口参数是2 */
+		&thread2_stack[0], sizeof(thread2_stack), /* 线程栈是thread2_stack */
 		THREAD_PRIORITY + 1, 10);
-	if (result == RT_EOK)
+	if (result == RT_EOK) /* 如果返回正确,启动线程2 */
 		rt_thread_startup(&thread2);
 	else
 		tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	return result;
+	return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* lock scheduler */
+	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
 	rt_enter_critical();
 
+	/* 执行线程脱离 */
 	if (thread1.stat != RT_THREAD_CLOSE)
 		rt_thread_detach(&thread1);
 	if (thread2.stat != RT_THREAD_CLOSE)
 		rt_thread_detach(&thread2);
 
-	/* unlock scheduler */
+	/* 调度器解锁 */
 	rt_exit_critical();
+
+	/* 设置TestCase状态 */
+	tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_static_simple()
 {
-	/* set tc cleanup */
+	/* 设置TestCase清理回调函数 */
 	tc_cleanup(_tc_cleanup);
 	thread_static_simple_init();
 
-	return 20;
+	/* 返回TestCase运行的最长时间 */
+	return 100;
 }
+/* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_static_simple, a static thread example);
 #else
+/* 用户应用入口 */
 int rt_application_init()
 {
 	thread_static_simple_init();
@@ -80,4 +97,3 @@ int rt_application_init()
 	return 0;
 }
 #endif
-

+ 100 - 0
examples/kernel/thread_suspend.c

@@ -0,0 +1,100 @@
+/*
+ * 程序清单:挂起线程
+ *
+ * 这个例子中将创建两个动态线程,高优先级线程将在一定时刻后挂起低优先级线程。
+ */
+#include <rtthread.h>
+#include "tc_comm.h"
+
+/* 指向线程控制块的指针 */
+static rt_thread_t tid1 = RT_NULL;
+static rt_thread_t tid2 = RT_NULL;
+/* 线程1入口 */
+static void thread1_entry(void* parameter)
+{
+	rt_uint32_t count = 0;
+
+	while (1)
+	{
+		/* 线程1采用低优先级运行,一直打印计数值 */
+		rt_kprintf("thread count: %d\n", count ++);
+	}
+}
+
+/* 线程2入口 */
+static void thread2_entry(void* parameter)
+{
+	/* 延时10个OS Tick */
+	rt_thread_delay(10);
+
+	/* 挂起线程1 */
+	rt_thread_suspend(tid1);
+
+	/* 延时10个OS Tick */
+	rt_thread_delay(10);
+
+	/* 线程2自动退出 */
+}
+
+int thread_suspend_init()
+{
+	/* 创建线程1 */
+	tid1 = rt_thread_create("thread",
+		thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
+		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+	if (tid1 != RT_NULL)
+		rt_thread_startup(tid1);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	/* 创建线程2 */
+	tid2 = rt_thread_create("thread",
+		thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
+		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+	if (tid2 != RT_NULL)
+		rt_thread_startup(tid2);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	return 0;
+}
+
+#ifdef RT_USING_TC
+static void _tc_cleanup()
+{
+	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+	rt_enter_critical();
+
+	/* 删除线程 */
+	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
+		rt_thread_delete(tid1);
+	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
+		rt_thread_delete(tid2);
+
+	/* 调度器解锁 */
+	rt_exit_critical();
+
+	/* 设置TestCase状态 */
+	tc_done(TC_STAT_PASSED);
+}
+
+int _tc_thread_suspend()
+{
+	/* 设置TestCase清理回调函数 */
+	tc_cleanup(_tc_cleanup);
+	thread_suspend_init();
+
+	/* 返回TestCase运行的最长时间 */
+	return 100;
+}
+/* 输出函数命令到finsh shell中 */
+FINSH_FUNCTION_EXPORT(_tc_thread_suspend, a thread suspend example);
+#else
+/* 用户应用入口 */
+int rt_application_init()
+{
+	thread_suspend_init();
+
+	return 0;
+}
+#endif

+ 101 - 0
examples/kernel/thread_yield.c

@@ -0,0 +1,101 @@
+/*
+ * 程序清单:
+ */
+#include <rtthread.h>
+#include "tc_comm.h"
+
+/* 指向线程控制块的指针 */
+static rt_thread_t tid1 = RT_NULL;
+static rt_thread_t tid2 = RT_NULL;
+/* 线程1入口 */
+static void thread1_entry(void* parameter)
+{
+	rt_uint32_t count = 0;
+
+	while (1)
+	{
+		/* 打印线程1的输出 */
+		rt_kprintf("thread1: count = %d\n", count ++);
+
+		/* 执行yield后应该切换到thread2执行 */
+		rt_thread_yield();
+	}
+}
+
+/* 线程2入口 */
+static void thread2_entry(void* parameter)
+{
+	rt_uint32_t count = 0;
+
+	while (1)
+	{
+		/* 打印线程2的输出 */
+		rt_kprintf("thread2: count = %d\n", count ++);
+
+		/* 执行yield后应该切换到thread1执行 */
+		rt_thread_yield();
+	}
+}
+
+int thread_yield_init()
+{
+	/* 创建线程1 */
+	tid1 = rt_thread_create("thread",
+		thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
+		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+	if (tid1 != RT_NULL)
+		rt_thread_startup(tid1);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	/* 创建线程2 */
+	tid2 = rt_thread_create("thread",
+		thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
+		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+	if (tid2 != RT_NULL)
+		rt_thread_startup(tid2);
+	else
+		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+	return 0;
+}
+
+#ifdef RT_USING_TC
+static void _tc_cleanup()
+{
+	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+	rt_enter_critical();
+
+	/* 删除线程 */
+	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
+		rt_thread_delete(tid1);
+	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
+		rt_thread_delete(tid2);
+
+	/* 调度器解锁 */
+	rt_exit_critical();
+
+	/* 设置TestCase状态 */
+	tc_done(TC_STAT_PASSED);
+}
+
+int _tc_thread_yield()
+{
+	/* 设置TestCase清理回调函数 */
+	tc_cleanup(_tc_cleanup);
+	thread_yield_init();
+
+	/* 返回TestCase运行的最长时间 */
+	return 100;
+}
+/* 输出函数命令到finsh shell中 */
+FINSH_FUNCTION_EXPORT(_tc_thread_yield, a thread yield example);
+#else
+/* 用户应用入口 */
+int rt_application_init()
+{
+	thread_yield_init();
+
+	return 0;
+}
+#endif