Browse Source

remove the drivers in uffs/nand which is already out of date. now you can look simulator to explore how to use uffs on nand flash or Realtouch demo code on github

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@2576 bbd45198-f89e-11dd-88c7-29a3b14d5316
goprife@gmail.com 12 years ago
parent
commit
e10d628b47

+ 0 - 637
components/dfs/filesystems/uffs/nand/k9f1g08_mtd.c

@@ -1,637 +0,0 @@
-/*
- * File      : rtthread.h
- * This file is part of RT-Thread RTOS
- * COPYRIGHT (C) 2006-2012, RT-Thread Development Team
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rt-thread.org/license/LICENSE.
- *
- * Change Logs:
- * Date           Author       Notes
- * 2011-10-13     prife        the first version 
- * 2012-03-11     prife        use mtd device interface
-*/
-
-#include <rtdevice.h>
-#include <s3c24x0.h>
-
-/* nand flash commands. This appears to be generic across all NAND flash chips */
-#define CMD_READ			0x00	//  Read
-#define CMD_READ1			0x01	//  Read1
-#define CMD_READ2			0x50	//  Read2
-#define CMD_READ3			0x30	//  Read3
-#define CMD_READID			0x90	//  ReadID
-#define CMD_WRITE1			0x80	//  Write phase 1
-#define CMD_WRITE2			0x10	//  Write phase 2
-#define CMD_ERASE1			0x60	//  Erase phase 1
-#define CMD_ERASE2			0xd0	//  Erase phase 2
-#define CMD_STATUS			0x70	//  Status read
-#define CMD_RESET			0xff	//  Reset
-#define CMD_RANDOMREAD1     0x05    //  random read	 phase 1
-#define CMD_RANDOMREAD2     0xE0    //	random read	 phase 2
-#define CMD_RANDOMWRITE     0x85    //	random write phase 1
-
-#define NF_CMD(cmd)			{NFCMD  = (cmd); }
-#define NF_ADDR(addr)		{NFADDR = (addr); }	
-#define NF_CE_L()			{NFCONT &= ~(1<<1); }
-#define NF_CE_H()			{NFCONT |= (1<<1); }
-#define NF_RSTECC()			{NFCONT |= (1<<4); }
-#define NF_RDMECC()			(NFMECC0 )
-#define NF_RDSECC()			(NFSECC )
-#define NF_RDDATA()			(NFDATA)
-#define NF_RDDATA8()		(NFDATA8)
-#define NF_WRDATA(data)		{NFDATA = (data); }
-#define NF_WRDATA8(data)	{NFDATA8 = (data); } 
-#define NF_WAITRB()			{while(!(NFSTAT&(1<<0)));} 
-#define NF_CLEAR_RB()		{NFSTAT |= (1<<2); }
-#define NF_DETECT_RB()		{while(!(NFSTAT&(1<<2)));}
-#define NF_MECC_UNLOCK()	{NFCONT &= ~(1<<5); }
-#define NF_MECC_LOCK()		{NFCONT |= (1<<5); }
-#define NF_SECC_UNLOCK()	{NFCONT &= ~(1<<6); }
-#define NF_SECC_LOCK()		{NFCONT |= (1<<6); }
-
-/* HCLK=100Mhz, TACLS + TWRPH0 + TWRPH1 >= 50ns */
-#define TACLS				1       // 1-clock(0ns)
-#define TWRPH0				4       // 3-clock(25ns)
-#define TWRPH1				0       // 1-clock(10ns)
-
-/* status bit pattern */
-#define STATUS_READY        0x40    // ready
-#define STATUS_ERROR        0x01    // error
-#define	STATUS_ILLACC       0x08    // illegal access
-
-/* configurations */
-#define PAGE_DATA_SIZE                  2048
-#define BLOCK_MARK_SPARE_OFFSET         4
-//#define CONFIG_USE_HW_ECC
-static struct rt_mutex nand;
-
-#define BLOCK_MARK_OFFSET  (PAGE_DATA_SIZE + BLOCK_MARK_SPARE_OFFSET)
-/*
- * In a page, data's ecc code is stored in spare area, from BYTE 0 to BYTEE 3.
- * Block's status byte which indicate a block is bad or not is BYTE4.
- */
-static void nand_hw_init(void)
-{
-	/* initialize GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
-	GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
-
-	/* enable PCLK for nand controller */
-	CLKCON |= 1 << 4;
-
-	NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
-	NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
-	NFSTAT = 0;
-
-	/* reset nand flash */
-	NF_CE_L();
-	NF_CLEAR_RB();
-	NF_CMD(CMD_RESET);
-	NF_DETECT_RB();
-	NF_CE_H();
-}
-
-/*
- *check the first byte in spare of the block's first page
- *return
- * good block,  RT_EOK
- * bad  blcok, return -RT_ERROR
- */
-static rt_err_t k9f1g08_mtd_check_block(
-		struct rt_mtd_nand_device* device,
-		rt_uint32_t block)
-{
-	rt_uint8_t status;
-	block =  block << 6;
-
-	NF_CE_L();
-	NF_CLEAR_RB();
-
-	NF_CMD(CMD_READ);
-	NF_ADDR(BLOCK_MARK_OFFSET);
-	NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-	NF_ADDR((block >>16) & 0xff);
-	NF_CMD(CMD_READ3);
-
-	NF_DETECT_RB();	 /* wait for ready bit */
-
-	status = NF_RDDATA8();
-	NF_CE_H();
-	/* TODO: more check about status */
-	return status == 0xFF ? RT_EOK : -RT_ERROR;
-
-#if 0
-	/* check the second page */
-	block ++;
-
-	NF_CE_L();
-	NF_CLEAR_RB();
-
-	NF_CMD(CMD_READ);
-	NF_ADDR(BLOCK_MARK_OFFSET);
-	NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-	NF_ADDR((block >>16) & 0xff);
-	NF_CMD(CMD_READ3);
-
-	NF_DETECT_RB();	 /* wait for ready bit */
-
-	status = NF_RDDATA8();
-	NF_CE_H();
-
-	return status == 0xFF ? RT_EOK : -RT_ERROR;
-#endif
-}
-
-static rt_err_t k9f1g08_mtd_mark_bad_block(
-		struct rt_mtd_nand_device* device,
-		rt_uint32_t block)
-{
-	/* get address of the fisrt page in the block */
-	rt_err_t result = RT_EOK;
-	block =  block << 6;
-
-	NF_CE_L();
-	NF_CLEAR_RB();
-	NF_CMD(CMD_WRITE1);
-
-	NF_ADDR(BLOCK_MARK_OFFSET);
-	NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-	NF_ADDR((block >>16) & 0xff);
-
-	/* write bad block mark in spare*/
-	NF_WRDATA8(0);
-
-	NF_CMD(CMD_WRITE2);
- 	NF_DETECT_RB();	     /* wait for ready bit */
-
-	if ( NFSTAT & STATUS_ILLACC )
-	{
-		NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
-        result = -RT_ERROR;
-	}
-	else
-	{
-		NF_CMD(CMD_STATUS);	/* get the status */
-
-		if (NF_RDDATA() &  STATUS_ERROR)
-			result = -RT_ERROR;
-	}
-
-	NF_CE_H(); /* disable chip select */
-    return result;
-}
-
-static rt_err_t k9f1g08_mtd_erase_block(
-		struct rt_mtd_nand_device* device,
-		rt_uint32_t block)
-{
-	/* 1 block = 64 page= 2^6*/
-    rt_err_t result = RT_EOK;
-	block <<= 6; /* get the first page's address in this block*/
-
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-	NF_CE_L();  /* enable chip */
-	NF_CLEAR_RB();
-	
-	NF_CMD(CMD_ERASE1);	/* erase one block 1st command */
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-//	NF_ADDR((block >> 16) & 0xff);
-	NF_CMD(CMD_ERASE2);	
-
-	NF_DETECT_RB(); /* wait for ready bit */
-
-	if ( NFSTAT & STATUS_ILLACC )
-	{
-		NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
-        result = -RT_ERROR;
-	} else {
-		
-		NF_CMD(CMD_STATUS);	/* check status	*/
-
-		if (NF_RDDATA() & STATUS_ERROR) {
-			result = -RT_ERROR;
-		}
-	}
-
-	NF_CE_H();
-	rt_mutex_release(&nand);
-	return result;
-
-}
-
-/* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
-static rt_err_t k9f1g08_mtd_read(
-		struct rt_mtd_nand_device * dev,
-		rt_off_t page,
-		rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
-		rt_uint8_t * spare, rt_uint32_t spare_len)
-{
-	rt_uint32_t i;
- 	rt_uint32_t mecc;
-	rt_uint32_t status;
-	rt_err_t result = RT_EOK;
-	
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-
-	NF_RSTECC();   /* reset ECC*/
-	NF_MECC_UNLOCK();/* unlock MECC */
-
-	NF_CE_L(); /* enable chip */
-
-	if (data != RT_NULL && data_len != 0)
-	{
-		/* read page data area */
-		NF_CLEAR_RB();
-
-		NF_CMD(CMD_READ);
-		NF_ADDR(0);
-		NF_ADDR(0);
-		NF_ADDR((page) & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-		NF_CMD(CMD_READ3);
-
-		NF_DETECT_RB();/* wait for ready bit */
-
-		/*TODO: use a more quick method */
-		for (i = 0; i < data_len; i++)
-			data[i] = NF_RDDATA8();
-
-		NF_MECC_LOCK();
-
-#if defined(CONFIG_USE_HW_ECC)
-		/* if read whole page data, then check ecc status */
-		if (data_len == PAGE_DATA_SIZE)
-		{
-			mecc = NF_RDDATA();
-
-			NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
-			NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
-
-			/* check data ecc */
-			status = NFESTAT0 & 0x03;
-
-			if (status == 0x00)      /* no error */
-				result = RT_EOK;
-			else if (status == 0x01) /* error can be fixed */
-			{
-				//TODO add code to do ecc correct operation
-				result = -1;
-			}
-			else                    /* error can't be fixed */
-				result = -2;
-		}
-#endif
-
-	}
-
-	if (spare != RT_NULL && spare_len != 0)
-	{
-		/* read page spare area */
-
-		NF_CLEAR_RB();
-
-		NF_CMD(CMD_READ);
-		NF_ADDR(PAGE_DATA_SIZE);
-		NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
-		NF_ADDR((page) & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-		NF_CMD(CMD_READ3);
-
-		NF_DETECT_RB();/* wait for ready bit */
-		/*TODO: use a more quick method */
-		for (i = 0; i < spare_len; i++)
-			spare[i] = NF_RDDATA8();
-
-		NF_MECC_LOCK();
-
-		result = RT_EOK;
-	}
-	NF_CE_H();
-	rt_mutex_release(&nand);
-
-	/* TODO: more check about status */
-	return result;
-}
-
-static rt_err_t k9f1g08_mtd_write (
-		struct rt_mtd_nand_device * dev,
-		rt_off_t page,
-		const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
-		const rt_uint8_t * spare, rt_uint32_t spare_len)
-{
-	rt_uint32_t i;
-	rt_uint32_t mecc0;
-	rt_err_t result = RT_EOK;
-#if defined(CONFIG_USE_HW_ECC)
-	rt_uint8_t ecc_data[4];
-#endif
-
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-
-	NF_CE_L();       /* enable chip */
-
-	NF_RSTECC();
-	NF_MECC_UNLOCK();
-
-	if (data != RT_NULL && data_len != 0)
-	{
-		RT_ASSERT(data_len == PAGE_DATA_SIZE);
-
-		NF_CLEAR_RB();
-		NF_CMD(CMD_WRITE1);
-
-		NF_ADDR(0);
-		NF_ADDR(0);
-		NF_ADDR( page & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-
-		for(i=0; i<PAGE_DATA_SIZE; i++)
-			NF_WRDATA8(data[i]);
-
-		NF_MECC_LOCK();
-
-#if defined(CONFIG_USE_HW_ECC)
-		/* produce HARDWARE ECC */
-		mecc0=NFMECC0;
-		ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
-		ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
-		ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
-		ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
-
-		/* write ecc to spare[0]..[3] */
-		for(i=0; i<4; i++)
-			NF_WRDATA8(ecc_data[i]);
-#endif
-
-		NF_CMD(CMD_WRITE2);
-		NF_DETECT_RB();	 	/* wait for ready bit */
-		if (NFSTAT & STATUS_ILLACC)
-		{
-			NFSTAT |= STATUS_ILLACC;
-			result = -RT_ERROR;
-			goto __ret;
-		}
-		else
-		{
-			NF_CMD(CMD_STATUS);
-			if (NF_RDDATA() & STATUS_ERROR)
-			{
-				result = -RT_ERROR;
-				goto __ret;
-			}
-		}
-	}
-
-	if (spare != RT_NULL && spare_len != 0)
-	{
-		NF_CLEAR_RB();
-		NF_CMD(CMD_WRITE1);
-
-		NF_ADDR(PAGE_DATA_SIZE);
-		NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
-		NF_ADDR( page & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-
-		for(i=0; i<spare_len; i++)
-			NF_WRDATA8(spare[i]);
-
-		NF_CMD(CMD_WRITE2);
-		NF_DETECT_RB();
-		if (NFSTAT & STATUS_ILLACC)
-		{
-			NFSTAT |= STATUS_ILLACC;
-			result = -RT_ERROR;
-			goto __ret;
-		}
-		else
-		{
-			NF_CMD(CMD_STATUS);
-			if (NF_RDDATA() & STATUS_ERROR)
-			{
-				result = -RT_ERROR;
-				goto __ret;
-			}
-		}
-	}
-
-__ret:
-	NF_CE_H(); /* disable chip */
-	rt_mutex_release(&nand);
-	return result;
-}
-
-static rt_err_t k9f1g08_read_id(
-		struct rt_mtd_nand_device * dev)
-{
-	return RT_EOK;
-}
-
-const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
-{
-	k9f1g08_read_id,
-	k9f1g08_mtd_read,
-	k9f1g08_mtd_write,
-	k9f1g08_mtd_erase_block,
-	k9f1g08_mtd_check_block,
-	k9f1g08_mtd_mark_bad_block,
-};
-
-/* interface of nand and rt-thread device */
-static struct rt_mtd_nand_device nand_part[4];
-
-void k9f1g08_mtd_init()
-{
-	/* initialize nand controller of S3C2440 */
-	nand_hw_init();
-
-    /* initialize mutex */
-	if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
-	{
-		rt_kprintf("init nand lock mutex failed\n");
-	}
-	/* the first partition of nand */
-	nand_part[0].page_size = PAGE_DATA_SIZE;
-	nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[0].block_start = 0;
-	nand_part[0].block_end = 255;
-	nand_part[0].oob_size = 64;
-	nand_part[0].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand0", &nand_part[0]);
-
-	/* the second partition of nand */
-	nand_part[1].page_size = PAGE_DATA_SIZE;
-	nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[1].block_start = 256;
-	nand_part[1].block_end = 512-1;
-	nand_part[1].oob_size = 64;
-	nand_part[1].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand1", &nand_part[1]);
-
-	/* the third partition of nand */
-	nand_part[2].page_size = PAGE_DATA_SIZE;
-	nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[2].block_start = 512;
-	nand_part[2].block_end = 512+256-1;
-	nand_part[2].oob_size = 64;
-	nand_part[2].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand2", &nand_part[2]);
-
-	/* the 4th partition of nand */
-	nand_part[3].page_size = PAGE_DATA_SIZE;
-	nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[3].block_start = 512+256;
-	nand_part[3].block_end = 1024-1;
-	nand_part[3].oob_size = 64;
-	nand_part[3].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand3", &nand_part[3]);
-}
-
-#include "finsh.h"
-static char buf[PAGE_DATA_SIZE+64];
-static char spare[64];
-
-void nand_erase(int start, int end)
-{
-	int page;
-	for(; start <= end; start ++)
-	{
-		page = start * 64;
-		rt_memset(buf, 0, PAGE_DATA_SIZE);
-		rt_memset(spare, 0, 64);
-
-		k9f1g08_mtd_erase_block(RT_NULL, start);
-
-		k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-		if (spare[0] != 0xFF)
-		{
-			rt_kprintf("block %d is bad, mark it bad\n", start);
-
-			//rt_memset(spare, 0xFF, 64);
-			if (spare[4] == 0xFF)
-			{
-				spare[4] = 0x00;
-				k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
-			}
-		}
-	}
-}
-
-int nand_read(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-//	rt_memset(spare, 0, 64);
-
-//	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-//		rt_kprintf("%02x ", spare[i]);
-		rt_kprintf("%02x ", buf[2048+i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-int nand_write(int page)
-{
-	int i;
-	rt_memset(buf, 0, PAGE_DATA_SIZE);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-		buf[i] = (i % 2) + i / 2;
-	return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
-}
-
-int nand_read2(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_memset(spare, 0, 64);
-	res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-		rt_kprintf("%02x ", spare[i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-int nand_read3(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-	rt_memset(spare, 0, 64);
-
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-		rt_kprintf("%02x ", spare[i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-
-int nand_check(int block)
-{
-	if ( k9f1g08_mtd_check_block(RT_NULL, block) != RT_EOK)
-		rt_kprintf("block %d is bad\n", block);
-	else
-		rt_kprintf("block %d is good\n", block);
-}
-
-int nand_mark(int block)
-{
-	return k9f1g08_mtd_mark_bad_block(RT_NULL, block);
-}
-FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
-FINSH_FUNCTION_EXPORT(nand_check, nand_check(1).);
-FINSH_FUNCTION_EXPORT(nand_mark, nand_mark(1).);
-FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);

+ 0 - 549
components/dfs/filesystems/uffs/nand/k9f1g08_mtd_ecc_hw.c

@@ -1,549 +0,0 @@
-/*
- * File      : rtthread.h
- * This file is part of RT-Thread RTOS
- * COPYRIGHT (C) 2006-2012, RT-Thread Development Team
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rt-thread.org/license/LICENSE.
- *
- * Change Logs:
- * Date           Author       Notes
- * 2011-10-13     prife        the first version 
- * 2012-03-11     prife        use mtd device interface
-*/
-
-#include <rtdevice.h>
-#include <s3c24x0.h>
-//#include "nand.h"
-//  For flash chip that is bigger than 32 MB, we need to have 4 step address
-//  
-#define NFCONF_INIT			0xF830  // 512-byte 4 Step Address
-#define NEED_EXT_ADDR			1
-//#define NFCONF_INIT			0xA830  // 256-byte 4 Step Address
-//#define NEED_EXT_ADDR			0
-
-//#define NFCONF_INIT			0xF840
-//  NAND Flash Command. This appears to be generic across all NAND flash chips
-#define CMD_READ			0x00	//  Read
-#define CMD_READ1			0x01	//  Read1
-#define CMD_READ2			0x50	//  Read2
-#define CMD_READ3			0x30	//  Read3
-#define CMD_READID			0x90	//  ReadID
-#define CMD_WRITE1			0x80	//  Write phase 1
-#define CMD_WRITE2			0x10	//  Write phase 2
-#define CMD_ERASE1			0x60	//  Erase phase 1
-#define CMD_ERASE2			0xd0	//  Erase phase 2
-#define CMD_STATUS			0x70	//  Status read
-#define CMD_RESET			0xff	//  Reset
-#define CMD_RANDOMREAD1     0x05    //  random read	 phase 1
-#define CMD_RANDOMREAD2     0xE0    //	random read	 phase 2
-#define CMD_RANDOMWRITE     0x85    //	random write phase 1
-
-#define NF_CMD(cmd)			{NFCMD  = (cmd); }
-#define NF_ADDR(addr)		{NFADDR = (addr); }	
-#define NF_nFCE_L()			{NFCONT &= ~(1<<1); }
-#define NF_nFCE_H()			{NFCONT |= (1<<1); }
-#define NF_RSTECC()			{NFCONT |= (1<<4); }
-#define NF_RDMECC()			(NFMECC0 )
-#define NF_RDSECC()			(NFSECC )
-#define NF_RDDATA()			(NFDATA)
-#define NF_RDDATA8()		(NFDATA8)
-#define NF_WRDATA(data)		{NFDATA = (data); }
-#define NF_WRDATA8(data)	{NFDATA8 = (data); } 
-#define NF_WAITRB()			{while(!(NFSTAT&(1<<0)));} 
-#define NF_CLEAR_RB()		{NFSTAT |= (1<<2); }
-#define NF_DETECT_RB()		{while(!(NFSTAT&(1<<2)));}
-#define NF_MECC_UnLock()	{NFCONT &= ~(1<<5); }
-#define NF_MECC_Lock()		{NFCONT |= (1<<5); }
-#define NF_SECC_UnLock()	{NFCONT &= ~(1<<6); }
-#define NF_SECC_Lock()		{NFCONT |= (1<<6); }
-
-#define	RdNFDat8()			(NFDATA8)	//byte access
-#define	RdNFDat()			RdNFDat8()	//for 8 bit nand flash, use byte access
-#define	WrNFDat8(dat)		(NFDATA8 = (dat))	//byte access
-#define	WrNFDat(dat)		WrNFDat8()	//for 8 bit nand flash, use byte access
-
-#define NF_CE_L()			NF_nFCE_L()
-#define NF_CE_H()			NF_nFCE_H()
-#define NF_DATA_R()			NFDATA
-#define NF_ECC()			NFECC0
-
-
-// HCLK=100Mhz
-#define TACLS				1	// 1-clk(0ns) 
-#define TWRPH0				4	// 3-clk(25ns)
-#define TWRPH1				0	// 1-clk(10ns)  //TACLS+TWRPH0+TWRPH1>=50ns
-
-//  Status bit pattern
-#define STATUS_READY            0x40        //  Ready
-#define STATUS_ERROR            0x01        //  Error
-#define	STATUS_ILLACC			0x08		//	Illigar Access
-//
-// ERROR_Xxx
-//
-#define ERR_SUCCESS						0
-#define ERR_DISK_OP_FAIL1				1
-#define ERR_DISK_OP_FAIL2				2
-#define ERR_INVALID_BOOT_SECTOR			3
-#define ERR_INVALID_LOAD_ADDR			4
-#define ERR_GEN_FAILURE					5
-#define ERR_INVALID_PARAMETER			6
-#define ERR_JUMP_FAILED					7
-#define ERR_INVALID_TOC					8
-#define ERR_INVALID_FILE_TYPE			9
-
-//#define NF_READID   1
-#define READ_SECTOR_INFO		
-
-
-#define NAND_BASE 0xB0E00000
-#define IOP_BASE  0xB1600000
-
-#define PAGE_DATA_SIZE  2048
-static struct rt_mutex nand;
-
-/*
- * In a page, data's ecc code is stored in spare area, spare BYTE0 to BYTEE 3
- * block's status byte which indicate a block is bad is BYTE4 in spare area
- */
-static void nand_hw_init(void)
-{
-	/* Init GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
-	GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
-
-	/* Enable PCLK into nand Controller */
-	CLKCON |= 1 << 4;
-
-	NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
-	NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
-	NFSTAT = 0;
-
-	/* reset nand flash */
-	NF_CE_L();
-	NF_CLEAR_RB();
-	NF_CMD(CMD_RESET);
-	NF_DETECT_RB();
-	NF_CE_H();
-}
-
-static rt_err_t k9f1g08_mtd_erase_block(
-		struct rt_mtd_nand_device* device,
-		rt_uint32_t block)
-{
-	/* 1 block = 64 page= 2^6*/
-    rt_err_t result = RT_EOK;
-	block <<= 6; /* get the first page's address in this block*/
-
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-	NF_nFCE_L();  /* enable chip */
-	NF_CLEAR_RB();
-	
-	NF_CMD(CMD_ERASE1);	/* Erase one block 1st command */
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-//	NF_ADDR((block >> 16) & 0xff);
-	NF_CMD(CMD_ERASE2);	
-
-	NF_DETECT_RB(); /* Wait for ready bit */
-
-	if ( NFSTAT & STATUS_ILLACC )
-	{
-		NFSTAT |= STATUS_ILLACC; /* Write 1 to clear.*/
-        result = -RT_ERROR;
-	} else {
-		
-		NF_CMD(CMD_STATUS);	/* Check the status	*/
-
-		if (NF_DATA_R() & STATUS_ERROR) {
-			result = -RT_ERROR;
-		}
-	}
-
-	NF_nFCE_H();
-	rt_mutex_release(&nand);
-	return result;
-/* TODO: more check about status */
-}
-
-/* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
-static rt_err_t k9f1g08_mtd_read(
-		struct rt_mtd_nand_device * dev,
-		rt_off_t page,
-		rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
-		rt_uint8_t * spare, rt_uint32_t spare_len)
-{
-	rt_uint32_t i;
- 	rt_uint32_t mecc;
-	rt_uint32_t status;
-	rt_err_t result;
-	
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-
-	NF_RSTECC();   /* reset ECC*/
-	NF_MECC_UnLock();/* unlock MECC */
-
-	NF_nFCE_L(); /* enable chip */
-
-	if (data != RT_NULL && data_len != 0)
-	{
-		/* read page data area */
-		NF_CLEAR_RB();
-
-		NF_CMD(CMD_READ);
-		NF_ADDR(0);
-		NF_ADDR(0);
-		NF_ADDR((page) & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-		NF_CMD(CMD_READ3);
-
-		NF_DETECT_RB();/* Wait for RB	*/
-
-		/*TODO: use a more quick method */
-		for (i = 0; i < data_len; i++)
-			data[i] = NF_RDDATA8();
-
-		NF_MECC_Lock();
-
-		/* if read whole page data, then check ecc status */
-		if (data_len == PAGE_DATA_SIZE)
-		{
-			mecc = NF_RDDATA();
-
-			NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
-			NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
-
-			/* check data ecc */
-			status = NFESTAT0 & 0x03;
-			if (status == 0x00)
-				result = RT_EOK; /* no error */
-			else if (status == 0x01)
-				result = -1;/* error can be fixed */
-			else
-				result = -2; /* erroe can't be fixed */
-		}
-		else
-			result = RT_EOK;
-
-	}
-
-	if (spare != RT_NULL && spare_len != 0)
-	{
-		/* read page spare area */
-
-		NF_CLEAR_RB();
-
-		NF_CMD(CMD_READ);
-		NF_ADDR(PAGE_DATA_SIZE);
-		NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
-		NF_ADDR((page) & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-		NF_CMD(CMD_READ3);
-
-		NF_DETECT_RB();/* Wait for RB	*/
-		/*TODO: use a more quick method */
-		for (i = 0; i < spare_len; i++)
-			spare[i] = NF_RDDATA8();
-
-		NF_MECC_Lock();
-
-		result = RT_EOK;
-	}
-	NF_nFCE_H();
-	rt_mutex_release(&nand);
-	return result;
-}
-
-static rt_err_t k9f1g08_mtd_write (
-		struct rt_mtd_nand_device * dev,
-		rt_off_t page,
-		const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
-		const rt_uint8_t * spare, rt_uint32_t spare_len)
-{
-	rt_uint32_t i;
-	rt_uint32_t mecc0;
-	rt_err_t result = RT_EOK;
-	rt_uint8_t ecc_data[4];
-
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-
-	NF_nFCE_L();       /* enable chip */
-
-	NF_RSTECC();
-	NF_MECC_UnLock();
-
-	if (data != RT_NULL && data_len != 0)
-	{
-		RT_ASSERT(data_len == PAGE_DATA_SIZE);
-
-		NF_CLEAR_RB();     /* clear RB */
-		NF_CMD(CMD_WRITE1);
-
-		NF_ADDR(0);
-		NF_ADDR(0);
-		NF_ADDR( page & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-
-		for(i=0; i<PAGE_DATA_SIZE; i++) //PAGE_DATA_SIZE
-			NF_WRDATA8(data[i]);
-
-		NF_MECC_Lock();
-
-		/* produce HARDWARE ECC */
-		mecc0=NFMECC0;
-		ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
-		ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
-		ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
-		ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
-
-		/* write ecc to spare[0]..[3] */
-		for(i=0; i<4; i++)
-			NF_WRDATA8(ecc_data[i]);
-
-		NF_CMD(CMD_WRITE2);
-		NF_DETECT_RB();	 	/* Wait for RB	*/
-		if (NFSTAT & STATUS_ILLACC)
-		{
-			NFSTAT |= STATUS_ILLACC;
-			result = -RT_ERROR;
-			goto __ret;
-		}
-		else
-		{
-			NF_CMD(CMD_STATUS);
-			if (NF_DATA_R() & STATUS_ERROR)
-			{
-				result = -RT_ERROR;
-				goto __ret;
-			}
-		}
-	}
-
-	if (spare != RT_NULL && spare_len != 0)
-	{
-		NF_CLEAR_RB();
-		NF_CMD(CMD_WRITE1);
-
-		NF_ADDR(PAGE_DATA_SIZE);
-		NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
-		NF_ADDR( page & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-
-		for(i=0; i<spare_len; i++)
-			NF_WRDATA8(spare[i]);
-
-		NF_CMD(CMD_WRITE2);
-		NF_DETECT_RB();
-		if (NFSTAT & STATUS_ILLACC)
-		{
-			NFSTAT |= STATUS_ILLACC;
-			result = -RT_ERROR;
-			goto __ret;
-		}
-		else
-		{
-			NF_CMD(CMD_STATUS);
-			if (NF_DATA_R() & STATUS_ERROR)
-			{
-				result = -RT_ERROR;
-				goto __ret;
-			}
-		}
-	}
-
-__ret:
-	NF_nFCE_H(); /* disable chip */
-	rt_mutex_release(&nand);
-	return result;
-}
-
-static rt_err_t k9f1g08_read_id(
-		struct rt_mtd_nand_device * dev)
-{
-	return RT_EOK;
-}
-
-const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
-{
-	k9f1g08_read_id,
-	k9f1g08_mtd_read,
-	k9f1g08_mtd_write,
-	k9f1g08_mtd_erase_block,
-};
-
-/* interface of nand and rt-thread device */
-static struct rt_mtd_nand_device nand_part[4];
-
-void k9f1g08_mtd_init()
-{
-	/* initialize nand controller of S3C2440 */
-	nand_hw_init();
-
-    /* initialize mutex */
-	if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
-	{
-		rt_kprintf("init nand lock mutex failed\n");
-	}
-	/* the first partition of nand */
-	nand_part[0].page_size = PAGE_DATA_SIZE;
-	nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[0].block_start = 0;
-	nand_part[0].block_end = 255;
-	nand_part[0].oob_size = 64;
-	nand_part[0].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand0", &nand_part[0]);
-
-	/* the second partition of nand */
-	nand_part[1].page_size = PAGE_DATA_SIZE;
-	nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[1].block_start = 256;
-	nand_part[1].block_end = 512-1;
-	nand_part[1].oob_size = 64;
-	nand_part[1].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand1", &nand_part[1]);
-
-	/* the third partition of nand */
-	nand_part[2].page_size = PAGE_DATA_SIZE;
-	nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[2].block_start = 512;
-	nand_part[2].block_end = 512+256-1;
-	nand_part[2].oob_size = 64;
-	nand_part[2].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand2", &nand_part[2]);
-
-	/* the 4th partition of nand */
-	nand_part[3].page_size = PAGE_DATA_SIZE;
-	nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[3].block_start = 512+256;
-	nand_part[3].block_end = 1024-1;
-	nand_part[3].oob_size = 64;
-	nand_part[3].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand3", &nand_part[3]);
-}
-
-#include "finsh.h"
-static char buf[PAGE_DATA_SIZE+64];
-static char spare[64];
-
-void nand_erase(int start, int end)
-{
-	int page;
-	for(; start <= end; start ++)
-	{
-		page = start * 64;
-		rt_memset(buf, 0, PAGE_DATA_SIZE);
-		rt_memset(spare, 0, 64);
-
-		k9f1g08_mtd_erase_block(RT_NULL, start);
-
-		k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-		if (spare[0] != 0xFF)
-		{
-			rt_kprintf("block %d is bad, mark it bad\n", start);
-
-			//rt_memset(spare, 0xFF, 64);
-			if (spare[4] == 0xFF)
-			{
-				spare[4] = 0x00;
-				k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
-			}
-		}
-	}
-}
-
-int nand_read(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-//	rt_memset(spare, 0, 64);
-
-//	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-//		rt_kprintf("%02x ", spare[i]);
-		rt_kprintf("%02x ", buf[2048+i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-int nand_write(int page)
-{
-	int i;
-	rt_memset(buf, 0, PAGE_DATA_SIZE);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-		buf[i] = (i % 2) + i / 2;
-	return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
-}
-
-int nand_read2(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_memset(spare, 0, 64);
-	res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-		rt_kprintf("%02x ", spare[i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-int nand_read3(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-	rt_memset(spare, 0, 64);
-
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-		rt_kprintf("%02x ", spare[i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
-FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);

+ 0 - 622
components/dfs/filesystems/uffs/nand/k9f1g08_mtd_ecc_soft.c

@@ -1,622 +0,0 @@
-/*
- * File      : rtthread.h
- * This file is part of RT-Thread RTOS
- * COPYRIGHT (C) 2006-2012, RT-Thread Development Team
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rt-thread.org/license/LICENSE.
- *
- * Change Logs:
- * Date           Author       Notes
- * 2011-10-13     prife        the first version 
- * 2012-03-11     prife        use mtd device interface
-*/
-
-#include <rtdevice.h>
-#include <s3c24x0.h>
-
-/* nand flash commands. This appears to be generic across all NAND flash chips */
-#define CMD_READ			0x00	//  Read
-#define CMD_READ1			0x01	//  Read1
-#define CMD_READ2			0x50	//  Read2
-#define CMD_READ3			0x30	//  Read3
-#define CMD_READID			0x90	//  ReadID
-#define CMD_WRITE1			0x80	//  Write phase 1
-#define CMD_WRITE2			0x10	//  Write phase 2
-#define CMD_ERASE1			0x60	//  Erase phase 1
-#define CMD_ERASE2			0xd0	//  Erase phase 2
-#define CMD_STATUS			0x70	//  Status read
-#define CMD_RESET			0xff	//  Reset
-#define CMD_RANDOMREAD1     0x05    //  random read	 phase 1
-#define CMD_RANDOMREAD2     0xE0    //	random read	 phase 2
-#define CMD_RANDOMWRITE     0x85    //	random write phase 1
-
-#define NF_CMD(cmd)			{NFCMD  = (cmd); }
-#define NF_ADDR(addr)		{NFADDR = (addr); }	
-#define NF_CE_L()			{NFCONT &= ~(1<<1); }
-#define NF_CE_H()			{NFCONT |= (1<<1); }
-#define NF_RSTECC()			{NFCONT |= (1<<4); }
-#define NF_RDMECC()			(NFMECC0 )
-#define NF_RDSECC()			(NFSECC )
-#define NF_RDDATA()			(NFDATA)
-#define NF_RDDATA8()		(NFDATA8)
-#define NF_WRDATA(data)		{NFDATA = (data); }
-#define NF_WRDATA8(data)	{NFDATA8 = (data); } 
-#define NF_WAITRB()			{while(!(NFSTAT&(1<<0)));} 
-#define NF_CLEAR_RB()		{NFSTAT |= (1<<2); }
-#define NF_DETECT_RB()		{while(!(NFSTAT&(1<<2)));}
-#define NF_MECC_UNLOCK()	{NFCONT &= ~(1<<5); }
-#define NF_MECC_LOCK()		{NFCONT |= (1<<5); }
-#define NF_SECC_UNLOCK()	{NFCONT &= ~(1<<6); }
-#define NF_SECC_LOCK()		{NFCONT |= (1<<6); }
-
-/* HCLK=100Mhz, TACLS + TWRPH0 + TWRPH1 >= 50ns */
-#define TACLS				1       // 1-clock(0ns)
-#define TWRPH0				4       // 3-clock(25ns)
-#define TWRPH1				0       // 1-clock(10ns)
-
-/* status bit pattern */
-#define STATUS_READY        0x40    // ready
-#define STATUS_ERROR        0x01    // error
-#define	STATUS_ILLACC       0x08    // illegal access
-
-/* configurations */
-#define PAGE_DATA_SIZE                  2048
-#define BLOCK_MARK_SPARE_OFFSET         4
-//#define CONFIG_USE_HW_ECC
-static struct rt_mutex nand;
-
-#define BLOCK_MARK_OFFSET  (PAGE_DATA_SIZE + BLOCK_MARK_SPARE_OFFSET)
-/*
- * In a page, data's ecc code is stored in spare area, from BYTE 0 to BYTEE 3.
- * Block's status byte which indicate a block is bad or not is BYTE4.
- */
-static void nand_hw_init(void)
-{
-	/* initialize GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
-	GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
-
-	/* enable PCLK for nand controller */
-	CLKCON |= 1 << 4;
-
-	NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
-	NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
-	NFSTAT = 0;
-
-	/* reset nand flash */
-	NF_CE_L();
-	NF_CLEAR_RB();
-	NF_CMD(CMD_RESET);
-	NF_DETECT_RB();
-	NF_CE_H();
-}
-
-/*
- *check the first byte in spare of the block's first page
- *return
- * good block,  RT_EOK
- * bad  blcok, return -RT_ERROR
- */
-static rt_err_t k9f1g08_mtd_check_block(
-		struct rt_mtd_nand_device* device,
-		rt_uint32_t block)
-{
-	rt_uint8_t status;
-	block =  block << 6;
-
-	NF_CE_L();
-	NF_CLEAR_RB();
-
-	NF_CMD(CMD_READ);
-	NF_ADDR(BLOCK_MARK_OFFSET);
-	NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-	NF_ADDR((block >>16) & 0xff);
-	NF_CMD(CMD_READ3);
-
-	NF_DETECT_RB();	 /* wait for ready bit */
-
-	status = NF_RDDATA8();
-	NF_CE_H();
-	/* TODO: more check about status */
-	return status == 0xFF ? RT_EOK : -RT_ERROR;
-
-#if 0
-	/* check the second page */
-	block ++;
-
-	NF_CE_L();
-	NF_CLEAR_RB();
-
-	NF_CMD(CMD_READ);
-	NF_ADDR(BLOCK_MARK_OFFSET);
-	NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-	NF_ADDR((block >>16) & 0xff);
-	NF_CMD(CMD_READ3);
-
-	NF_DETECT_RB();	 /* wait for ready bit */
-
-	status = NF_RDDATA8();
-	NF_CE_H();
-
-	return status == 0xFF ? RT_EOK : -RT_ERROR;
-#endif
-}
-
-static rt_err_t k9f1g08_mtd_mark_bad_block(
-		struct rt_mtd_nand_device* device,
-		rt_uint32_t block)
-{
-	/* get address of the fisrt page in the block */
-	block =  block << 6;
-	rt_err_t result = RT_EOK;
-
-	NF_CE_L();
-	NF_CLEAR_RB();
-	NF_CMD(CMD_WRITE1);
-
-	NF_ADDR(BLOCK_MARK_OFFSET);
-	NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-	NF_ADDR((block >>16) & 0xff);
-
-	/* write bad block mark in spare*/
-	NF_WRDATA8(0);
-
-	NF_CMD(CMD_WRITE2);
- 	NF_DETECT_RB();	     /* wait for ready bit */
-
-	if ( NFSTAT & STATUS_ILLACC )
-	{
-		NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
-        result = -RT_ERROR;
-	}
-	else
-	{
-		NF_CMD(CMD_STATUS);	/* get the status */
-
-		if (NF_RDDATA() &  STATUS_ERROR)
-			result = -RT_ERROR;
-	}
-
-	NF_CE_H(); /* disable chip select */
-    return result;
-}
-
-static rt_err_t k9f1g08_mtd_erase_block(
-		struct rt_mtd_nand_device* device,
-		rt_uint32_t block)
-{
-	/* 1 block = 64 page= 2^6*/
-    rt_err_t result = RT_EOK;
-	block <<= 6; /* get the first page's address in this block*/
-
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-	NF_CE_L();  /* enable chip */
-	NF_CLEAR_RB();
-	
-	NF_CMD(CMD_ERASE1);	/* erase one block 1st command */
-	NF_ADDR(block & 0xff);
-	NF_ADDR((block >> 8) & 0xff);
-//	NF_ADDR((block >> 16) & 0xff);
-	NF_CMD(CMD_ERASE2);	
-
-	NF_DETECT_RB(); /* wait for ready bit */
-
-	if ( NFSTAT & STATUS_ILLACC )
-	{
-		NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
-        result = -RT_ERROR;
-	} else {
-		
-		NF_CMD(CMD_STATUS);	/* check status	*/
-
-		if (NF_RDDATA() & STATUS_ERROR) {
-			result = -RT_ERROR;
-		}
-	}
-
-	NF_CE_H();
-	rt_mutex_release(&nand);
-	return result;
-
-}
-
-/* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
-static rt_err_t k9f1g08_mtd_read(
-		struct rt_mtd_nand_device * dev,
-		rt_off_t page,
-		rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
-		rt_uint8_t * spare, rt_uint32_t spare_len)
-{
-	rt_uint32_t i;
- 	rt_uint32_t mecc;
-	rt_uint32_t status;
-	rt_err_t result = RT_EOK;
-	
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-
-	NF_RSTECC();   /* reset ECC*/
-	NF_MECC_UNLOCK();/* unlock MECC */
-
-	NF_CE_L(); /* enable chip */
-
-	if (data != RT_NULL && data_len != 0)
-	{
-		/* read page data area */
-		NF_CLEAR_RB();
-
-		NF_CMD(CMD_READ);
-		NF_ADDR(0);
-		NF_ADDR(0);
-		NF_ADDR((page) & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-		NF_CMD(CMD_READ3);
-
-		NF_DETECT_RB();/* wait for ready bit */
-
-		/*TODO: use a more quick method */
-		for (i = 0; i < data_len; i++)
-			data[i] = NF_RDDATA8();
-
-		NF_MECC_LOCK();
-
-#if defined(CONFIG_USE_HW_ECC)
-		/* if read whole page data, then check ecc status */
-		if (data_len == PAGE_DATA_SIZE)
-		{
-			mecc = NF_RDDATA();
-
-			NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
-			NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
-
-			/* check data ecc */
-			status = NFESTAT0 & 0x03;
-
-			if (status == 0x00)      /* no error */
-				result = RT_EOK;
-			else if (status == 0x01) /* error can be fixed */
-			{
-				//TODO add code to do ecc correct operation
-				result = -1;
-			}
-			else                    /* error can't be fixed */
-				result = -2;
-		}
-#endif
-
-	}
-
-	if (spare != RT_NULL && spare_len != 0)
-	{
-		/* read page spare area */
-
-		NF_CLEAR_RB();
-
-		NF_CMD(CMD_READ);
-		NF_ADDR(PAGE_DATA_SIZE);
-		NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
-		NF_ADDR((page) & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-		NF_CMD(CMD_READ3);
-
-		NF_DETECT_RB();/* wait for ready bit */
-		/*TODO: use a more quick method */
-		for (i = 0; i < spare_len; i++)
-			spare[i] = NF_RDDATA8();
-
-		NF_MECC_LOCK();
-
-		result = RT_EOK;
-	}
-	NF_CE_H();
-	rt_mutex_release(&nand);
-
-	/* TODO: more check about status */
-	return result;
-}
-
-static rt_err_t k9f1g08_mtd_write (
-		struct rt_mtd_nand_device * dev,
-		rt_off_t page,
-		const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
-		const rt_uint8_t * spare, rt_uint32_t spare_len)
-{
-	rt_uint32_t i;
-	rt_uint32_t mecc0;
-	rt_err_t result = RT_EOK;
-#if defined(CONFIG_USE_HW_ECC)
-	rt_uint8_t ecc_data[4];
-#endif
-
-	rt_mutex_take(&nand, RT_WAITING_FOREVER);
-
-	NF_CE_L();       /* enable chip */
-
-	NF_RSTECC();
-	NF_MECC_UNLOCK();
-
-	if (data != RT_NULL && data_len != 0)
-	{
-		RT_ASSERT(data_len == PAGE_DATA_SIZE);
-
-		NF_CLEAR_RB();
-		NF_CMD(CMD_WRITE1);
-
-		NF_ADDR(0);
-		NF_ADDR(0);
-		NF_ADDR( page & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-
-		for(i=0; i<PAGE_DATA_SIZE; i++)
-			NF_WRDATA8(data[i]);
-
-		NF_MECC_LOCK();
-
-#if defined(CONFIG_USE_HW_ECC)
-		/* produce HARDWARE ECC */
-		mecc0=NFMECC0;
-		ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
-		ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
-		ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
-		ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
-
-		/* write ecc to spare[0]..[3] */
-		for(i=0; i<4; i++)
-			NF_WRDATA8(ecc_data[i]);
-#endif
-
-		NF_CMD(CMD_WRITE2);
-		NF_DETECT_RB();	 	/* wait for ready bit */
-		if (NFSTAT & STATUS_ILLACC)
-		{
-			NFSTAT |= STATUS_ILLACC;
-			result = -RT_ERROR;
-			goto __ret;
-		}
-		else
-		{
-			NF_CMD(CMD_STATUS);
-			if (NF_RDDATA() & STATUS_ERROR)
-			{
-				result = -RT_ERROR;
-				goto __ret;
-			}
-		}
-	}
-
-	if (spare != RT_NULL && spare_len != 0)
-	{
-		NF_CLEAR_RB();
-		NF_CMD(CMD_WRITE1);
-
-		NF_ADDR(PAGE_DATA_SIZE);
-		NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
-		NF_ADDR( page & 0xff);
-		NF_ADDR((page >> 8) & 0xff);
-//		NF_ADDR((page >> 16) & 0xff);
-
-		for(i=0; i<spare_len; i++)
-			NF_WRDATA8(spare[i]);
-
-		NF_CMD(CMD_WRITE2);
-		NF_DETECT_RB();
-		if (NFSTAT & STATUS_ILLACC)
-		{
-			NFSTAT |= STATUS_ILLACC;
-			result = -RT_ERROR;
-			goto __ret;
-		}
-		else
-		{
-			NF_CMD(CMD_STATUS);
-			if (NF_RDDATA() & STATUS_ERROR)
-			{
-				result = -RT_ERROR;
-				goto __ret;
-			}
-		}
-	}
-
-__ret:
-	NF_CE_H(); /* disable chip */
-	rt_mutex_release(&nand);
-	return result;
-}
-
-static rt_err_t k9f1g08_read_id(
-		struct rt_mtd_nand_device * dev)
-{
-	return RT_EOK;
-}
-
-const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
-{
-	k9f1g08_read_id,
-	k9f1g08_mtd_read,
-	k9f1g08_mtd_write,
-	k9f1g08_mtd_erase_block,
-	k9f1g08_mtd_check_block,
-	k9f1g08_mtd_mark_bad_block,
-};
-
-/* interface of nand and rt-thread device */
-static struct rt_mtd_nand_device nand_part[4];
-
-void k9f1g08_mtd_init()
-{
-	/* initialize nand controller of S3C2440 */
-	nand_hw_init();
-
-    /* initialize mutex */
-	if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
-	{
-		rt_kprintf("init nand lock mutex failed\n");
-	}
-	/* the first partition of nand */
-	nand_part[0].page_size = PAGE_DATA_SIZE;
-	nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[0].block_start = 0;
-	nand_part[0].block_end = 255;
-	nand_part[0].oob_size = 64;
-	nand_part[0].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand0", &nand_part[0]);
-
-	/* the second partition of nand */
-	nand_part[1].page_size = PAGE_DATA_SIZE;
-	nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[1].block_start = 256;
-	nand_part[1].block_end = 512-1;
-	nand_part[1].oob_size = 64;
-	nand_part[1].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand1", &nand_part[1]);
-
-	/* the third partition of nand */
-	nand_part[2].page_size = PAGE_DATA_SIZE;
-	nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[2].block_start = 512;
-	nand_part[2].block_end = 512+256-1;
-	nand_part[2].oob_size = 64;
-	nand_part[2].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand2", &nand_part[2]);
-
-	/* the 4th partition of nand */
-	nand_part[3].page_size = PAGE_DATA_SIZE;
-	nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
-	nand_part[3].block_start = 512+256;
-	nand_part[3].block_end = 1024-1;
-	nand_part[3].oob_size = 64;
-	nand_part[3].ops = &k9f1g08_mtd_ops;
-	rt_mtd_nand_register_device("nand3", &nand_part[3]);
-}
-
-#include "finsh.h"
-static char buf[PAGE_DATA_SIZE+64];
-static char spare[64];
-
-void nand_erase(int start, int end)
-{
-	int page;
-	for(; start <= end; start ++)
-	{
-		page = start * 64;
-		rt_memset(buf, 0, PAGE_DATA_SIZE);
-		rt_memset(spare, 0, 64);
-
-		k9f1g08_mtd_erase_block(RT_NULL, start);
-
-		k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-		if (spare[0] != 0xFF)
-		{
-			rt_kprintf("block %d is bad, mark it bad\n", start);
-
-			//rt_memset(spare, 0xFF, 64);
-			if (spare[4] == 0xFF)
-			{
-				spare[4] = 0x00;
-				k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
-			}
-		}
-	}
-}
-
-int nand_read(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-//	rt_memset(spare, 0, 64);
-
-//	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-//		rt_kprintf("%02x ", spare[i]);
-		rt_kprintf("%02x ", buf[2048+i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-int nand_write(int page)
-{
-	int i;
-	rt_memset(buf, 0, PAGE_DATA_SIZE);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-		buf[i] = (i % 2) + i / 2;
-	return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
-}
-
-int nand_read2(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_memset(spare, 0, 64);
-	res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-		rt_kprintf("%02x ", spare[i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-int nand_read3(int page)
-{
-	int i;
-	int res;
-	rt_memset(buf, 0, sizeof(buf));
-	rt_memset(spare, 0, 64);
-
-	res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
-	rt_kprintf("block=%d, page=%d\n", page/64, page%64);
-	for(i=0; i<PAGE_DATA_SIZE; i++)
-	{
-		rt_kprintf("%02x ", buf[i]);
-		if((i+1)%16 == 0)
-			rt_kprintf("\n");
-	}
-
-	rt_kprintf("spare:\n");
-	for(i=0; i<64; i++)
-	{
-		rt_kprintf("%02x ", spare[i]);
-		if((i+1)%8 == 0)
-			rt_kprintf("\n");
-	}
-	return res;
-}
-FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
-FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
-FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);