|
@@ -1,12 +1,168 @@
|
|
#include <math.h>
|
|
#include <math.h>
|
|
|
|
|
|
-/* Fix me */
|
|
|
|
-double sin(double x)
|
|
|
|
|
|
+/*
|
|
|
|
+ * COPYRIGHT: See COPYING in the top level directory
|
|
|
|
+ * PROJECT: ReactOS CRT
|
|
|
|
+ * FILE: lib/crt/math/cos.c
|
|
|
|
+ * PURPOSE: Generic C Implementation of cos
|
|
|
|
+ * PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org)
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#define PRECISION 9
|
|
|
|
+
|
|
|
|
+static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
|
|
|
|
+static double cos_sign_tbl[] = {1,-1,-1,1};
|
|
|
|
+
|
|
|
|
+static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
|
|
|
|
+static double sin_sign_tbl[] = {1,-1,-1,1};
|
|
|
|
+
|
|
|
|
+double sin(double x)
|
|
{
|
|
{
|
|
- #warning sin function not supported for this platform
|
|
|
|
|
|
+ int quadrant;
|
|
|
|
+ double x2, result;
|
|
|
|
+
|
|
|
|
+ /* Calculate the quadrant */
|
|
|
|
+ quadrant = x * (2./M_PI);
|
|
|
|
+
|
|
|
|
+ /* Get offset inside quadrant */
|
|
|
|
+ x = x - quadrant * (M_PI/2.);
|
|
|
|
+
|
|
|
|
+ /* Normalize quadrant to [0..3] */
|
|
|
|
+ quadrant = (quadrant - 1) & 0x3;
|
|
|
|
+
|
|
|
|
+ /* Fixup value for the generic function */
|
|
|
|
+ x += sin_off_tbl[quadrant];
|
|
|
|
+
|
|
|
|
+ /* Calculate the negative of the square of x */
|
|
|
|
+ x2 = - (x * x);
|
|
|
|
+
|
|
|
|
+ /* This is an unrolled taylor series using <PRECISION> iterations
|
|
|
|
+ * Example with 4 iterations:
|
|
|
|
+ * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
|
|
|
|
+ * To save multiplications and to keep the precision high, it's performed
|
|
|
|
+ * like this:
|
|
|
|
+ * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* Start with 0, compiler will optimize this away */
|
|
|
|
+ result = 0;
|
|
|
|
+
|
|
|
|
+#if (PRECISION >= 10)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 9)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 8)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 7)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 6)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 5)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1./(1.*2*3*4*5*6);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1./(1.*2*3*4);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1./(1.*2);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1;
|
|
|
|
+
|
|
|
|
+ /* Apply correct sign */
|
|
|
|
+ result *= sin_sign_tbl[quadrant];
|
|
|
|
+
|
|
|
|
+ return result;
|
|
}
|
|
}
|
|
|
|
|
|
-double cos(double x)
|
|
|
|
|
|
+double cos(double x)
|
|
{
|
|
{
|
|
- #warning cos function not supported for this platform
|
|
|
|
|
|
+ int quadrant;
|
|
|
|
+ double x2, result;
|
|
|
|
+
|
|
|
|
+ /* Calculate the quadrant */
|
|
|
|
+ quadrant = x * (2./M_PI);
|
|
|
|
+
|
|
|
|
+ /* Get offset inside quadrant */
|
|
|
|
+ x = x - quadrant * (M_PI/2.);
|
|
|
|
+
|
|
|
|
+ /* Normalize quadrant to [0..3] */
|
|
|
|
+ quadrant = quadrant & 0x3;
|
|
|
|
+
|
|
|
|
+ /* Fixup value for the generic function */
|
|
|
|
+ x += cos_off_tbl[quadrant];
|
|
|
|
+
|
|
|
|
+ /* Calculate the negative of the square of x */
|
|
|
|
+ x2 = - (x * x);
|
|
|
|
+
|
|
|
|
+ /* This is an unrolled taylor series using <PRECISION> iterations
|
|
|
|
+ * Example with 4 iterations:
|
|
|
|
+ * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
|
|
|
|
+ * To save multiplications and to keep the precision high, it's performed
|
|
|
|
+ * like this:
|
|
|
|
+ * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* Start with 0, compiler will optimize this away */
|
|
|
|
+ result = 0;
|
|
|
|
+
|
|
|
|
+#if (PRECISION >= 10)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 9)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 8)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 7)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 6)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+#if (PRECISION >= 5)
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8*9*10);
|
|
|
|
+ result *= x2;
|
|
|
|
+#endif
|
|
|
|
+ result += 1./(1.*2*3*4*5*6*7*8);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1./(1.*2*3*4*5*6);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1./(1.*2*3*4);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1./(1.*2);
|
|
|
|
+ result *= x2;
|
|
|
|
+
|
|
|
|
+ result += 1;
|
|
|
|
+
|
|
|
|
+ /* Apply correct sign */
|
|
|
|
+ result *= cos_sign_tbl[quadrant];
|
|
|
|
+
|
|
|
|
+ return result;
|
|
}
|
|
}
|
|
|
|
+
|