瀏覽代碼

TC: expand TABs

Grissiom 11 年之前
父節點
當前提交
f7b1421880

+ 2 - 2
examples/kernel/cpuusage.c

@@ -1,8 +1,8 @@
 #include <rtthread.h>
 #include <rthw.h>
 
-#define CPU_USAGE_CALC_TICK	10
-#define CPU_USAGE_LOOP		100
+#define CPU_USAGE_CALC_TICK    10
+#define CPU_USAGE_LOOP        100
 
 static rt_uint8_t  cpu_usage_major = 0, cpu_usage_minor= 0;
 static rt_uint32_t total_count = 0;

+ 1 - 1
examples/kernel/heap_realloc.c

@@ -72,7 +72,7 @@ static void heap_realloc_init()
         res = TC_STAT_FAILED;
     if (mem_check(ptr3, 3, 31)  == RT_FALSE)
         res = TC_STAT_FAILED;
-    if (mem_check(ptr4, 4, 1)	== RT_FALSE)
+    if (mem_check(ptr4, 4, 1)    == RT_FALSE)
         res = TC_STAT_FAILED;
 
 _free:

+ 189 - 189
examples/kernel/semaphore_buffer_worker.c

@@ -12,9 +12,9 @@
 /* 一个环形buffer的实现 */
 struct rb
 {
-	rt_uint16_t read_index, write_index;
-	rt_uint8_t *buffer_ptr;
-	rt_uint16_t buffer_size;
+    rt_uint16_t read_index, write_index;
+    rt_uint8_t *buffer_ptr;
+    rt_uint16_t buffer_size;
 };
 
 /* 指向信号量控制块的指针 */
@@ -23,236 +23,236 @@ static rt_sem_t sem = RT_NULL;
 static rt_thread_t tid = RT_NULL, worker = RT_NULL;
 
 /* 环形buffer的内存块(用数组体现出来) */
-#define BUFFER_SIZE		256
-#define BUFFER_ITEM		32
+#define BUFFER_SIZE        256
+#define BUFFER_ITEM        32
 static rt_uint8_t working_buffer[BUFFER_SIZE];
 struct rb working_rb;
 
 /* 初始化环形buffer,size指的是buffer的大小。注:这里并没对数据地址对齐做处理 */
 static void rb_init(struct rb* rb, rt_uint8_t *pool, rt_uint16_t size)
 {
-	RT_ASSERT(rb != RT_NULL);
+    RT_ASSERT(rb != RT_NULL);
 
-	/* 对读写指针清零*/
-	rb->read_index = rb->write_index = 0;
+    /* 对读写指针清零*/
+    rb->read_index = rb->write_index = 0;
 
-	/* 设置环形buffer的内存数据块 */
-	rb->buffer_ptr = pool;
-	rb->buffer_size = size;
+    /* 设置环形buffer的内存数据块 */
+    rb->buffer_ptr = pool;
+    rb->buffer_size = size;
 }
 
 /* 向环形buffer中写入数据 */
 static rt_bool_t rb_put(struct rb* rb, const rt_uint8_t *ptr, rt_uint16_t length)
 {
-	rt_size_t size;
-
-	/* 判断是否有足够的剩余空间 */
-	if (rb->read_index > rb->write_index)
-		size = rb->read_index - rb->write_index;
-	else
-		size = rb->buffer_size - rb->write_index + rb->read_index;
-
-	/* 没有多余的空间 */
-	if (size < length) return RT_FALSE;
-
-	if (rb->read_index > rb->write_index)
-	{
-		/* read_index - write_index 即为总的空余空间 */
-		memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
-		rb->write_index += length;
-	}
-	else
-	{
-		if (rb->buffer_size - rb->write_index > length)
-		{
-			/* write_index 后面剩余的空间有足够的长度 */
-			memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
-			rb->write_index += length;
-		}
-		else
-		{
-			/*
-			 * write_index 后面剩余的空间不存在足够的长度,需要把部分数据复制到
-			 * 前面的剩余空间中
-			 */
-			memcpy(&rb->buffer_ptr[rb->write_index], ptr,
-				rb->buffer_size - rb->write_index);
-			memcpy(&rb->buffer_ptr[0], &ptr[rb->buffer_size - rb->write_index],
-				length - (rb->buffer_size - rb->write_index));
-			rb->write_index = length - (rb->buffer_size - rb->write_index);
-		}
-	}
-
-	return RT_TRUE;
+    rt_size_t size;
+
+    /* 判断是否有足够的剩余空间 */
+    if (rb->read_index > rb->write_index)
+        size = rb->read_index - rb->write_index;
+    else
+        size = rb->buffer_size - rb->write_index + rb->read_index;
+
+    /* 没有多余的空间 */
+    if (size < length) return RT_FALSE;
+
+    if (rb->read_index > rb->write_index)
+    {
+        /* read_index - write_index 即为总的空余空间 */
+        memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
+        rb->write_index += length;
+    }
+    else
+    {
+        if (rb->buffer_size - rb->write_index > length)
+        {
+            /* write_index 后面剩余的空间有足够的长度 */
+            memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
+            rb->write_index += length;
+        }
+        else
+        {
+            /*
+             * write_index 后面剩余的空间不存在足够的长度,需要把部分数据复制到
+             * 前面的剩余空间中
+             */
+            memcpy(&rb->buffer_ptr[rb->write_index], ptr,
+                   rb->buffer_size - rb->write_index);
+            memcpy(&rb->buffer_ptr[0], &ptr[rb->buffer_size - rb->write_index],
+                   length - (rb->buffer_size - rb->write_index));
+            rb->write_index = length - (rb->buffer_size - rb->write_index);
+        }
+    }
+
+    return RT_TRUE;
 }
 
 /* 从环形buffer中读出数据 */
 static rt_bool_t rb_get(struct rb* rb, rt_uint8_t *ptr, rt_uint16_t length)
 {
-	rt_size_t size;
-
-	/* 判断是否有足够的数据 */
-	if (rb->read_index > rb->write_index)
-		size = rb->buffer_size - rb->read_index + rb->write_index;
-	else
-		size = rb->write_index - rb->read_index;
-
-	/* 没有足够的数据 */
-	if (size < length) return RT_FALSE;
-
-	if (rb->read_index > rb->write_index)
-	{
-		if (rb->buffer_size - rb->read_index > length)
-		{
-			/* read_index的数据足够多,直接复制 */
-			memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
-			rb->read_index += length;
-		}
-		else
-		{
-			/* read_index的数据不够,需要分段复制 */
-			memcpy(ptr, &rb->buffer_ptr[rb->read_index],
-				rb->buffer_size - rb->read_index);
-			memcpy(&ptr[rb->buffer_size - rb->read_index], &rb->buffer_ptr[0],
-				length - rb->buffer_size + rb->read_index);
-			rb->read_index = length - rb->buffer_size + rb->read_index;
-		}
-	}
-	else
-	{
-		/*
-		 * read_index要比write_index小,总的数据量够(前面已经有总数据量的判
-		 * 断),直接复制出数据。
-		 */
-		memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
-		rb->read_index += length;
-	}
-
-	return RT_TRUE;
+    rt_size_t size;
+
+    /* 判断是否有足够的数据 */
+    if (rb->read_index > rb->write_index)
+        size = rb->buffer_size - rb->read_index + rb->write_index;
+    else
+        size = rb->write_index - rb->read_index;
+
+    /* 没有足够的数据 */
+    if (size < length) return RT_FALSE;
+
+    if (rb->read_index > rb->write_index)
+    {
+        if (rb->buffer_size - rb->read_index > length)
+        {
+            /* read_index的数据足够多,直接复制 */
+            memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
+            rb->read_index += length;
+        }
+        else
+        {
+            /* read_index的数据不够,需要分段复制 */
+            memcpy(ptr, &rb->buffer_ptr[rb->read_index],
+                   rb->buffer_size - rb->read_index);
+            memcpy(&ptr[rb->buffer_size - rb->read_index], &rb->buffer_ptr[0],
+                   length - rb->buffer_size + rb->read_index);
+            rb->read_index = length - rb->buffer_size + rb->read_index;
+        }
+    }
+    else
+    {
+        /*
+         * read_index要比write_index小,总的数据量够(前面已经有总数据量的判
+         * 断),直接复制出数据。
+         */
+        memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
+        rb->read_index += length;
+    }
+
+    return RT_TRUE;
 }
 
 /* 生产者线程入口 */
 static void thread_entry(void* parameter)
 {
-	rt_bool_t result;
-	rt_uint8_t data_buffer[BUFFER_ITEM + 1];
-
-	while (1)
-	{
-		/* 持有信号量 */
-		rt_sem_take(sem, RT_WAITING_FOREVER);
-		/* 从环buffer中获得数据 */
-		result = rb_get(&working_rb, &data_buffer[0], BUFFER_ITEM);
-		/* 释放信号量 */
-		rt_sem_release(sem);
-		data_buffer[BUFFER_ITEM] = '\0';
-
-		if (result == RT_TRUE)
-		{
-			/* 获取数据成功,打印数据 */
-			rt_kprintf("%s\n", data_buffer);
-		}
-
-		/* 做一个5 OS Tick的休眠 */
-		rt_thread_delay(5);
-	}
+    rt_bool_t result;
+    rt_uint8_t data_buffer[BUFFER_ITEM + 1];
+
+    while (1)
+    {
+        /* 持有信号量 */
+        rt_sem_take(sem, RT_WAITING_FOREVER);
+        /* 从环buffer中获得数据 */
+        result = rb_get(&working_rb, &data_buffer[0], BUFFER_ITEM);
+        /* 释放信号量 */
+        rt_sem_release(sem);
+        data_buffer[BUFFER_ITEM] = '\0';
+
+        if (result == RT_TRUE)
+        {
+            /* 获取数据成功,打印数据 */
+            rt_kprintf("%s\n", data_buffer);
+        }
+
+        /* 做一个5 OS Tick的休眠 */
+        rt_thread_delay(5);
+    }
 }
 
 /* worker线程入口 */
 static void worker_entry(void* parameter)
 {
-	rt_bool_t result;
-	rt_uint32_t index, setchar;
-	rt_uint8_t  data_buffer[BUFFER_ITEM];
-
-	setchar = 0x21;
-	while (1)
-	{
-		/* 构造数据 */
-		for(index = 0; index < BUFFER_ITEM; index++)
-		{
-			data_buffer[index] = setchar;
-			if (++setchar == 0x7f)
-				setchar = 0x21;
-		}
-
-		/* 持有信号量 */
-		rt_sem_take(sem, RT_WAITING_FOREVER);
-		/* 把数据放到环形buffer中 */
-		result = rb_put(&working_rb, &data_buffer[0], BUFFER_ITEM);
-		/* 释放信号量 */
-		rt_sem_release(sem);
-
-		/* 放入成功,做一个10 OS Tick的休眠 */
-		rt_thread_delay(10);
-	}
+    rt_bool_t result;
+    rt_uint32_t index, setchar;
+    rt_uint8_t  data_buffer[BUFFER_ITEM];
+
+    setchar = 0x21;
+    while (1)
+    {
+        /* 构造数据 */
+        for(index = 0; index < BUFFER_ITEM; index++)
+        {
+            data_buffer[index] = setchar;
+            if (++setchar == 0x7f)
+                setchar = 0x21;
+        }
+
+        /* 持有信号量 */
+        rt_sem_take(sem, RT_WAITING_FOREVER);
+        /* 把数据放到环形buffer中 */
+        result = rb_put(&working_rb, &data_buffer[0], BUFFER_ITEM);
+        /* 释放信号量 */
+        rt_sem_release(sem);
+
+        /* 放入成功,做一个10 OS Tick的休眠 */
+        rt_thread_delay(10);
+    }
 }
 
 int semaphore_buffer_worker_init()
 {
-	/* 初始化ring buffer */
-	rb_init(&working_rb, working_buffer, BUFFER_SIZE);
-
-	/* 创建信号量 */
-	sem = rt_sem_create("sem", 1, RT_IPC_FLAG_FIFO);
-	if (sem == RT_NULL)
-	{
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-		return 0;
-	}
-
-	/* 创建线程1 */
-	tid = rt_thread_create("thread",
-		thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid != RT_NULL)
-		rt_thread_startup(tid);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	/* 创建线程2 */
-	worker = rt_thread_create("worker",
-		worker_entry, RT_NULL, /* 线程入口是worker_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (worker != RT_NULL)
-		rt_thread_startup(worker);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    /* 初始化ring buffer */
+    rb_init(&working_rb, working_buffer, BUFFER_SIZE);
+
+    /* 创建信号量 */
+    sem = rt_sem_create("sem", 1, RT_IPC_FLAG_FIFO);
+    if (sem == RT_NULL)
+    {
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+        return 0;
+    }
+
+    /* 创建线程1 */
+    tid = rt_thread_create("thread",
+                           thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
+                           THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid != RT_NULL)
+        rt_thread_startup(tid);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    /* 创建线程2 */
+    worker = rt_thread_create("worker",
+                              worker_entry, RT_NULL, /* 线程入口是worker_entry, 入口参数是RT_NULL */
+                              THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (worker != RT_NULL)
+        rt_thread_startup(worker);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除信号量 */
-	if (sem != RT_NULL)
-		rt_sem_delete(sem);
+    /* 删除信号量 */
+    if (sem != RT_NULL)
+        rt_sem_delete(sem);
 
-	/* 删除线程 */
-	if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid);
-	if (worker != RT_NULL && worker->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(worker);
+    /* 删除线程 */
+    if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid);
+    if (worker != RT_NULL && worker->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(worker);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_semaphore_buffer_worker()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	semaphore_buffer_worker_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    semaphore_buffer_worker_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_semaphore_buffer_worker, a buffer worker with semaphore example);
@@ -260,8 +260,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_buffer_worker, a buffer worker with semaphor
 /* 用户应用入口 */
 int rt_application_init()
 {
-	semaphore_buffer_worker_init();
+    semaphore_buffer_worker_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 88 - 88
examples/kernel/semaphore_dynamic.c

@@ -15,112 +15,112 @@ static rt_sem_t sem = RT_NULL;
 /* 线程入口 */
 static void thread_entry(void* parameter)
 {
-	rt_err_t result;
-	rt_tick_t tick;
+    rt_err_t result;
+    rt_tick_t tick;
 
-	/* 获得当前的OS Tick */
-	tick = rt_tick_get();
+    /* 获得当前的OS Tick */
+    tick = rt_tick_get();
 
-	/* 试图持有一个信号量,如果10个OS Tick依然没拿到,则超时返回 */
-	result = rt_sem_take(sem, 10);
-	if (result == -RT_ETIMEOUT)
-	{
+    /* 试图持有一个信号量,如果10个OS Tick依然没拿到,则超时返回 */
+    result = rt_sem_take(sem, 10);
+    if (result == -RT_ETIMEOUT)
+    {
         rt_tick_t new_tick = rt_tick_get();
-		/* 可以有两个 tick 的误差 */
-		if (new_tick - tick >= 12)
-		{
+        /* 可以有两个 tick 的误差 */
+        if (new_tick - tick >= 12)
+        {
             rt_kprintf("tick error to large: expect: 10, get %d\n",
                        new_tick - tick);
 
-			/* 如果失败,则测试失败 */
-			tc_done(TC_STAT_FAILED);
-			rt_sem_delete(sem);
-			return;
-		}
-		rt_kprintf("take semaphore timeout\n");
-	}
-	else
-	{
-		/* 因为并没释放信号量,应该是超时返回,否则测试失败 */
-		tc_done(TC_STAT_FAILED);
-		rt_sem_delete(sem);
-		return;
-	}
-
-	/* 释放一次信号量 */
-	rt_sem_release(sem);
-
-	/* 继续持有信号量,并永远等待直到持有到信号量 */
-	result = rt_sem_take(sem, RT_WAITING_FOREVER);
-	if (result != RT_EOK)
-	{
-		/* 返回不正确,测试失败 */
-		tc_done(TC_STAT_FAILED);
-		rt_sem_delete(sem);
-		return;
-	}
-
-	/* 测试成功 */
-	tc_done(TC_STAT_PASSED);
-	/* 删除信号量 */
-	rt_sem_delete(sem);
+            /* 如果失败,则测试失败 */
+            tc_done(TC_STAT_FAILED);
+            rt_sem_delete(sem);
+            return;
+        }
+        rt_kprintf("take semaphore timeout\n");
+    }
+    else
+    {
+        /* 因为并没释放信号量,应该是超时返回,否则测试失败 */
+        tc_done(TC_STAT_FAILED);
+        rt_sem_delete(sem);
+        return;
+    }
+
+    /* 释放一次信号量 */
+    rt_sem_release(sem);
+
+    /* 继续持有信号量,并永远等待直到持有到信号量 */
+    result = rt_sem_take(sem, RT_WAITING_FOREVER);
+    if (result != RT_EOK)
+    {
+        /* 返回不正确,测试失败 */
+        tc_done(TC_STAT_FAILED);
+        rt_sem_delete(sem);
+        return;
+    }
+
+    /* 测试成功 */
+    tc_done(TC_STAT_PASSED);
+    /* 删除信号量 */
+    rt_sem_delete(sem);
 }
 
 int semaphore_dynamic_init()
 {
-	/* 创建一个信号量,初始值是0 */
-	sem = rt_sem_create("sem", 0, RT_IPC_FLAG_FIFO);
-	if (sem == RT_NULL)
-	{
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-		return 0;
-	}
-
-	/* 创建线程 */
-	tid = rt_thread_create("thread",
-		thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid != RT_NULL)
-		rt_thread_startup(tid);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    /* 创建一个信号量,初始值是0 */
+    sem = rt_sem_create("sem", 0, RT_IPC_FLAG_FIFO);
+    if (sem == RT_NULL)
+    {
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+        return 0;
+    }
+
+    /* 创建线程 */
+    tid = rt_thread_create("thread",
+                           thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
+                           THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid != RT_NULL)
+        rt_thread_startup(tid);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
-
-	if (sem)
-	{
-		rt_sem_delete(sem);
-		sem = RT_NULL;
-	}
-
-	/* 删除线程 */
-	if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
-	{
-		rt_thread_delete(tid);
-	}
-
-	/* 调度器解锁 */
-	rt_exit_critical();
-
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
+
+    if (sem)
+    {
+        rt_sem_delete(sem);
+        sem = RT_NULL;
+    }
+
+    /* 删除线程 */
+    if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
+    {
+        rt_thread_delete(tid);
+    }
+
+    /* 调度器解锁 */
+    rt_exit_critical();
+
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_semaphore_dynamic()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	semaphore_dynamic_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    semaphore_dynamic_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_semaphore_dynamic, a dynamic semaphore example);
@@ -128,8 +128,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_dynamic, a dynamic semaphore example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	semaphore_dynamic_init();
+    semaphore_dynamic_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 95 - 95
examples/kernel/semaphore_priority.c

@@ -6,129 +6,129 @@ static rt_uint8_t t1_count, t2_count;
 static rt_thread_t t1, t2, worker;
 static void thread1_entry(void* parameter)
 {
-	rt_err_t result;
-
-	while (1)
-	{
-		result = rt_sem_take(sem, RT_WAITING_FOREVER);
-		if (result != RT_EOK)
-		{
-			tc_done(TC_STAT_FAILED);
-			return;
-		}
-
-		t1_count ++;
-		rt_kprintf("thread1: got semaphore, count: %d\n", t1_count);
-	}
+    rt_err_t result;
+
+    while (1)
+    {
+        result = rt_sem_take(sem, RT_WAITING_FOREVER);
+        if (result != RT_EOK)
+        {
+            tc_done(TC_STAT_FAILED);
+            return;
+        }
+
+        t1_count ++;
+        rt_kprintf("thread1: got semaphore, count: %d\n", t1_count);
+    }
 }
 
 static void thread2_entry(void* parameter)
 {
-	rt_err_t result;
-
-	while (1)
-	{
-		result = rt_sem_take(sem, RT_WAITING_FOREVER);
-		if (result != RT_EOK)
-		{
-			tc_done(TC_STAT_FAILED);
-			return;
-		}
-
-		t2_count ++;
-		rt_kprintf("thread2: got semaphore, count: %d\n", t2_count);
-	}
+    rt_err_t result;
+
+    while (1)
+    {
+        result = rt_sem_take(sem, RT_WAITING_FOREVER);
+        if (result != RT_EOK)
+        {
+            tc_done(TC_STAT_FAILED);
+            return;
+        }
+
+        t2_count ++;
+        rt_kprintf("thread2: got semaphore, count: %d\n", t2_count);
+    }
 }
 
 static void worker_thread_entry(void* parameter)
 {
-	rt_thread_delay(10);
+    rt_thread_delay(10);
 
-	while (1)
-	{
-		rt_sem_release(sem);
-		rt_thread_delay(5);
-	}
+    while (1)
+    {
+        rt_sem_release(sem);
+        rt_thread_delay(5);
+    }
 }
 
 int semaphore_priority_init()
 {
-	sem = rt_sem_create("sem", 0, RT_IPC_FLAG_PRIO);
-	if (sem == RT_NULL)
-	{
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-		return 0;
-	}
-
-	t1_count = t2_count = 0;
-
-	t1 = rt_thread_create("t1",
-		thread1_entry, RT_NULL,
-		THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
-	if (t1 != RT_NULL)
-		rt_thread_startup(t1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	t2 = rt_thread_create("t2",
-		thread2_entry, RT_NULL,
-		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
-	if (t2 != RT_NULL)
-		rt_thread_startup(t2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	worker = rt_thread_create("worker",
-		worker_thread_entry, RT_NULL,
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (worker != RT_NULL)
-		rt_thread_startup(worker);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    sem = rt_sem_create("sem", 0, RT_IPC_FLAG_PRIO);
+    if (sem == RT_NULL)
+    {
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+        return 0;
+    }
+
+    t1_count = t2_count = 0;
+
+    t1 = rt_thread_create("t1",
+                          thread1_entry, RT_NULL,
+                          THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
+    if (t1 != RT_NULL)
+        rt_thread_startup(t1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    t2 = rt_thread_create("t2",
+                          thread2_entry, RT_NULL,
+                          THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+    if (t2 != RT_NULL)
+        rt_thread_startup(t2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    worker = rt_thread_create("worker",
+                              worker_thread_entry, RT_NULL,
+                              THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (worker != RT_NULL)
+        rt_thread_startup(worker);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* lock scheduler */
-	rt_enter_critical();
-
-	/* delete t1, t2 and worker thread */
-	rt_thread_delete(t1);
-	rt_thread_delete(t2);
-	rt_thread_delete(worker);
-
-	if (sem)
-	{
-		rt_sem_delete(sem);
-		sem = RT_NULL;
-	}
-
-	if (t1_count > t2_count)
-		tc_done(TC_STAT_FAILED);
-	else
-		tc_done(TC_STAT_PASSED);
-
-	/* unlock scheduler */
-	rt_exit_critical();
+    /* lock scheduler */
+    rt_enter_critical();
+
+    /* delete t1, t2 and worker thread */
+    rt_thread_delete(t1);
+    rt_thread_delete(t2);
+    rt_thread_delete(worker);
+
+    if (sem)
+    {
+        rt_sem_delete(sem);
+        sem = RT_NULL;
+    }
+
+    if (t1_count > t2_count)
+        tc_done(TC_STAT_FAILED);
+    else
+        tc_done(TC_STAT_PASSED);
+
+    /* unlock scheduler */
+    rt_exit_critical();
 }
 
 int _tc_semaphore_priority()
 {
-	/* set tc cleanup */
-	tc_cleanup(_tc_cleanup);
-	semaphore_priority_init();
+    /* set tc cleanup */
+    tc_cleanup(_tc_cleanup);
+    semaphore_priority_init();
 
-	return 50;
+    return 50;
 }
 FINSH_FUNCTION_EXPORT(_tc_semaphore_priority, a priority semaphore test);
 #else
 int rt_application_init()
 {
-	semaphore_priority_init();
+    semaphore_priority_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 92 - 92
examples/kernel/semaphore_producer_consumer.c

@@ -24,126 +24,126 @@ struct rt_semaphore sem_empty, sem_full;
 /* 生成者线程入口 */
 void producer_thread_entry(void* parameter)
 {
-	int cnt = 0;
-
-	/* 运行100次 */
-	while( cnt < 100)
-	{
-		/* 获取一个空位 */
-		rt_sem_take(&sem_empty, RT_WAITING_FOREVER);
-
-		/* 修改array内容,上锁 */
-		rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
-		array[set%MAXSEM] = cnt + 1;
-		rt_kprintf("the producer generates a number: %d\n", array[set%MAXSEM]);
-		set++;
-		rt_sem_release(&sem_lock);
-
-		/* 发布一个满位 */
-		rt_sem_release(&sem_full);
-		cnt++;
-
-		/* 暂停一段时间 */
-		rt_thread_delay(50);
-	}
-
-	rt_kprintf("the producer exit!\n");
+    int cnt = 0;
+
+    /* 运行100次 */
+    while( cnt < 100)
+    {
+        /* 获取一个空位 */
+        rt_sem_take(&sem_empty, RT_WAITING_FOREVER);
+
+        /* 修改array内容,上锁 */
+        rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
+        array[set%MAXSEM] = cnt + 1;
+        rt_kprintf("the producer generates a number: %d\n", array[set%MAXSEM]);
+        set++;
+        rt_sem_release(&sem_lock);
+
+        /* 发布一个满位 */
+        rt_sem_release(&sem_full);
+        cnt++;
+
+        /* 暂停一段时间 */
+        rt_thread_delay(50);
+    }
+
+    rt_kprintf("the producer exit!\n");
 }
 
 /* 消费者线程入口 */
 void consumer_thread_entry(void* parameter)
 {
-	rt_uint32_t no;
-	rt_uint32_t sum;
+    rt_uint32_t no;
+    rt_uint32_t sum;
 
-	/* 第n个线程,由入口参数传进来 */
-	no = (rt_uint32_t)parameter;
+    /* 第n个线程,由入口参数传进来 */
+    no = (rt_uint32_t)parameter;
 
-	while(1)
-	{
-		/* 获取一个满位 */
-		rt_sem_take(&sem_full, RT_WAITING_FOREVER);
+    while(1)
+    {
+        /* 获取一个满位 */
+        rt_sem_take(&sem_full, RT_WAITING_FOREVER);
 
-		/* 临界区,上锁进行操作 */
-		rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
-		sum += array[get%MAXSEM];
-		rt_kprintf("the consumer[%d] get a number: %d\n", no, array[get%MAXSEM] );
-		get++;
-		rt_sem_release(&sem_lock);
+        /* 临界区,上锁进行操作 */
+        rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
+        sum += array[get%MAXSEM];
+        rt_kprintf("the consumer[%d] get a number: %d\n", no, array[get%MAXSEM] );
+        get++;
+        rt_sem_release(&sem_lock);
 
-		/* 释放一个空位 */
-		rt_sem_release(&sem_empty);
+        /* 释放一个空位 */
+        rt_sem_release(&sem_empty);
 
-		/* 生产者生产到100个数目,停止,消费者线程相应停止 */
-		if (get == 100) break;
+        /* 生产者生产到100个数目,停止,消费者线程相应停止 */
+        if (get == 100) break;
 
-		/* 暂停一小会时间 */
-		rt_thread_delay(10);
-	}
+        /* 暂停一小会时间 */
+        rt_thread_delay(10);
+    }
 
-	rt_kprintf("the consumer[%d] sum is %d \n ", no, sum);
-	rt_kprintf("the consumer[%d] exit!\n");
+    rt_kprintf("the consumer[%d] sum is %d \n ", no, sum);
+    rt_kprintf("the consumer[%d] exit!\n");
 }
 
 int semaphore_producer_consumer_init()
 {
-	/* 初始化3个信号量 */
-	rt_sem_init(&sem_lock , "lock",     1,      RT_IPC_FLAG_FIFO);
-	rt_sem_init(&sem_empty, "empty",    MAXSEM, RT_IPC_FLAG_FIFO);
-	rt_sem_init(&sem_full , "full",     0,      RT_IPC_FLAG_FIFO);
-
-	/* 创建线程1 */
-	producer_tid = rt_thread_create("producer",
-		producer_thread_entry, RT_NULL, /* 线程入口是producer_thread_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
-	if (producer_tid != RT_NULL)
-		rt_thread_startup(producer_tid);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	/* 创建线程2 */
-	consumer_tid = rt_thread_create("consumer",
-		consumer_thread_entry, RT_NULL, /* 线程入口是consumer_thread_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
-	if (consumer_tid != RT_NULL)
-		rt_thread_startup(consumer_tid);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    /* 初始化3个信号量 */
+    rt_sem_init(&sem_lock , "lock",     1,      RT_IPC_FLAG_FIFO);
+    rt_sem_init(&sem_empty, "empty",    MAXSEM, RT_IPC_FLAG_FIFO);
+    rt_sem_init(&sem_full , "full",     0,      RT_IPC_FLAG_FIFO);
+
+    /* 创建线程1 */
+    producer_tid = rt_thread_create("producer",
+                                    producer_thread_entry, RT_NULL, /* 线程入口是producer_thread_entry, 入口参数是RT_NULL */
+                                    THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+    if (producer_tid != RT_NULL)
+        rt_thread_startup(producer_tid);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    /* 创建线程2 */
+    consumer_tid = rt_thread_create("consumer",
+                                    consumer_thread_entry, RT_NULL, /* 线程入口是consumer_thread_entry, 入口参数是RT_NULL */
+                                    THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
+    if (consumer_tid != RT_NULL)
+        rt_thread_startup(consumer_tid);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	rt_sem_detach(&sem_lock);
-	rt_sem_detach(&sem_empty);
-	rt_sem_detach(&sem_full);
+    rt_sem_detach(&sem_lock);
+    rt_sem_detach(&sem_empty);
+    rt_sem_detach(&sem_full);
 
-	/* 删除线程 */
-	if (producer_tid != RT_NULL && producer_tid->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(producer_tid);
-	if (consumer_tid != RT_NULL && consumer_tid->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(consumer_tid);
+    /* 删除线程 */
+    if (producer_tid != RT_NULL && producer_tid->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(producer_tid);
+    if (consumer_tid != RT_NULL && consumer_tid->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(consumer_tid);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_semaphore_producer_consumer()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	semaphore_producer_consumer_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    semaphore_producer_consumer_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_semaphore_producer_consumer, producer and consumer example);
@@ -151,8 +151,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_producer_consumer, producer and consumer exa
 /* 用户应用入口 */
 int rt_application_init()
 {
-	semaphore_producer_consumer_init();
+    semaphore_producer_consumer_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 85 - 85
examples/kernel/semaphore_static.c

@@ -17,107 +17,107 @@ static struct rt_semaphore sem;
 /* 线程入口 */
 static void thread_entry(void* parameter)
 {
-	rt_err_t result;
-	rt_tick_t tick;
-
-	/* 获得当前的OS Tick */
-	tick = rt_tick_get();
-
-	/* 试图持有信号量,最大等待10个OS Tick后返回 */
-	result = rt_sem_take(&sem, 10);
-	if (result == -RT_ETIMEOUT)
-	{
-		/* 超时后判断是否刚好是10个OS Tick */
-		if (rt_tick_get() - tick != 10)
-		{
-			tc_done(TC_STAT_FAILED);
-			rt_sem_detach(&sem);
-			return;
-		}
-		rt_kprintf("take semaphore timeout\n");
-	}
-	else
-	{
-		/* 因为没有其他地方是否信号量,所以不应该成功持有信号量,否则测试失败 */
-		tc_done(TC_STAT_FAILED);
-		rt_sem_detach(&sem);
-		return;
-	}
-
-	/* 释放一次信号量 */
-	rt_sem_release(&sem);
-
-	/* 永久等待方式持有信号量 */
-	result = rt_sem_take(&sem, RT_WAITING_FOREVER);
-	if (result != RT_EOK)
-	{
-		/* 不成功则测试失败 */
-		tc_done(TC_STAT_FAILED);
-		rt_sem_detach(&sem);
-		return;
-	}
-
-	/* 测试通过 */
-	tc_done(TC_STAT_PASSED);
-	/* 脱离信号量对象 */
-	rt_sem_detach(&sem);
+    rt_err_t result;
+    rt_tick_t tick;
+
+    /* 获得当前的OS Tick */
+    tick = rt_tick_get();
+
+    /* 试图持有信号量,最大等待10个OS Tick后返回 */
+    result = rt_sem_take(&sem, 10);
+    if (result == -RT_ETIMEOUT)
+    {
+        /* 超时后判断是否刚好是10个OS Tick */
+        if (rt_tick_get() - tick != 10)
+        {
+            tc_done(TC_STAT_FAILED);
+            rt_sem_detach(&sem);
+            return;
+        }
+        rt_kprintf("take semaphore timeout\n");
+    }
+    else
+    {
+        /* 因为没有其他地方是否信号量,所以不应该成功持有信号量,否则测试失败 */
+        tc_done(TC_STAT_FAILED);
+        rt_sem_detach(&sem);
+        return;
+    }
+
+    /* 释放一次信号量 */
+    rt_sem_release(&sem);
+
+    /* 永久等待方式持有信号量 */
+    result = rt_sem_take(&sem, RT_WAITING_FOREVER);
+    if (result != RT_EOK)
+    {
+        /* 不成功则测试失败 */
+        tc_done(TC_STAT_FAILED);
+        rt_sem_detach(&sem);
+        return;
+    }
+
+    /* 测试通过 */
+    tc_done(TC_STAT_PASSED);
+    /* 脱离信号量对象 */
+    rt_sem_detach(&sem);
 }
 
 int semaphore_static_init(void)
 {
-	rt_err_t result;
-
-	/* 初始化信号量,初始值是0 */
-	result = rt_sem_init(&sem, "sem", 0, RT_IPC_FLAG_FIFO);
-	if (result != RT_EOK)
-	{
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-		return 0;
-	}
-
-	/* 初始化线程1 */
-	result = rt_thread_init(&thread, "thread", /* 线程名:thread */
-		thread_entry, RT_NULL, /* 线程的入口是thread_entry,入口参数是RT_NULL*/
-		&thread_stack[0], sizeof(thread_stack), /* 线程栈是thread_stack */
-		THREAD_PRIORITY, 10);
-	if (result == RT_EOK) /* 如果返回正确,启动线程1 */
-		rt_thread_startup(&thread);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    rt_err_t result;
+
+    /* 初始化信号量,初始值是0 */
+    result = rt_sem_init(&sem, "sem", 0, RT_IPC_FLAG_FIFO);
+    if (result != RT_EOK)
+    {
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+        return 0;
+    }
+
+    /* 初始化线程1 */
+    result = rt_thread_init(&thread, "thread", /* 线程名:thread */
+                            thread_entry, RT_NULL, /* 线程的入口是thread_entry,入口参数是RT_NULL*/
+                            &thread_stack[0], sizeof(thread_stack), /* 线程栈是thread_stack */
+                            THREAD_PRIORITY, 10);
+    if (result == RT_EOK) /* 如果返回正确,启动线程1 */
+        rt_thread_startup(&thread);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup(void)
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 执行线程脱离 */
-	if (thread.stat != RT_THREAD_CLOSE)
-	{
-		rt_thread_detach(&thread);
+    /* 执行线程脱离 */
+    if (thread.stat != RT_THREAD_CLOSE)
+    {
+        rt_thread_detach(&thread);
 
-		/* 执行信号量对象脱离 */
-		rt_sem_detach(&sem);
-	}
+        /* 执行信号量对象脱离 */
+        rt_sem_detach(&sem);
+    }
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_semaphore_static(void)
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	semaphore_static_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    semaphore_static_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_semaphore_static, a static semaphore example);
@@ -125,8 +125,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_static, a static semaphore example);
 /* 用户应用入口 */
 int rt_application_init(void)
 {
-	semaphore_static_init();
+    semaphore_static_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 114 - 114
examples/kernel/tc_comm.c

@@ -4,8 +4,8 @@
 #endif
 
 #ifdef RT_USING_TC
-#define TC_PRIORITY		25
-#define TC_STACK_SIZE	0x400
+#define TC_PRIORITY        25
+#define TC_STACK_SIZE    0x400
 
 static rt_uint8_t _tc_stat;
 static struct rt_semaphore _tc_sem;
@@ -20,24 +20,24 @@ FINSH_VAR_EXPORT(_tc_scale, finsh_type_int, the testcase timer timeout scale)
 
 void tc_thread_entry(void* parameter)
 {
-	unsigned int fail_count = 0;
-	struct finsh_syscall* index;
-
-	/* create tc semaphore */
-	rt_sem_init(&_tc_sem, "tc", 0, RT_IPC_FLAG_FIFO);
-
-	while (_tc_stat & TC_STAT_RUNNING)
-	{
-		for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
-		{
-			/* search testcase */
-			if (rt_strstr(index->name, _tc_prefix) == index->name)
-			{
-				long tick;
-
-				_tc_current = index->name + 4;
-				rt_kprintf("Run TestCase: %s\n", _tc_current);
-				_tc_stat = TC_STAT_PASSED | TC_STAT_RUNNING;
+    unsigned int fail_count = 0;
+    struct finsh_syscall* index;
+
+    /* create tc semaphore */
+    rt_sem_init(&_tc_sem, "tc", 0, RT_IPC_FLAG_FIFO);
+
+    while (_tc_stat & TC_STAT_RUNNING)
+    {
+        for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
+        {
+            /* search testcase */
+            if (rt_strstr(index->name, _tc_prefix) == index->name)
+            {
+                long tick;
+
+                _tc_current = index->name + 4;
+                rt_kprintf("Run TestCase: %s\n", _tc_current);
+                _tc_stat = TC_STAT_PASSED | TC_STAT_RUNNING;
                 tick = index->func();
                 if (tick > 0)
                 {
@@ -60,130 +60,130 @@ void tc_thread_entry(void* parameter)
                                _tc_current);
                     /* If the TC forgot to clear the flag, we do it. */
                     _tc_stat &= ~TC_STAT_RUNNING;
-				}
-
-				if (_tc_stat & TC_STAT_FAILED)
-				{
-					rt_kprintf("TestCase[%s] failed\n", _tc_current);
-					fail_count++;
-				}
-				else
-				{
-					rt_kprintf("TestCase[%s] passed\n", _tc_current);
-				}
-			}
-		}
-	}
-
-	rt_kprintf("RT-Thread TestCase Running Done!\n");
-	if (fail_count)
-	{
-		rt_kprintf("%d tests failed\n", fail_count);
-	}
-	else
-	{
-		rt_kprintf("All tests passed\n");
-	}
-	/* detach tc semaphore */
-	rt_sem_detach(&_tc_sem);
+                }
+
+                if (_tc_stat & TC_STAT_FAILED)
+                {
+                    rt_kprintf("TestCase[%s] failed\n", _tc_current);
+                    fail_count++;
+                }
+                else
+                {
+                    rt_kprintf("TestCase[%s] passed\n", _tc_current);
+                }
+            }
+        }
+    }
+
+    rt_kprintf("RT-Thread TestCase Running Done!\n");
+    if (fail_count)
+    {
+        rt_kprintf("%d tests failed\n", fail_count);
+    }
+    else
+    {
+        rt_kprintf("All tests passed\n");
+    }
+    /* detach tc semaphore */
+    rt_sem_detach(&_tc_sem);
 }
 
 void tc_stop()
 {
-	_tc_stat &= ~TC_STAT_RUNNING;
-
-	rt_thread_delay(RT_TICK_PER_SECOND/2);
-	if (_tc_thread.stat != RT_THREAD_INIT)
-	{
-		/* lock scheduler */
-		rt_enter_critical();
-
-		/* detach old tc thread */
-		rt_thread_detach(&_tc_thread);
-		rt_sem_detach(&_tc_sem);
-
-		/* unlock scheduler */
-		rt_exit_critical();
-	}
-	rt_thread_delay(RT_TICK_PER_SECOND/2);
+    _tc_stat &= ~TC_STAT_RUNNING;
+
+    rt_thread_delay(RT_TICK_PER_SECOND/2);
+    if (_tc_thread.stat != RT_THREAD_INIT)
+    {
+        /* lock scheduler */
+        rt_enter_critical();
+
+        /* detach old tc thread */
+        rt_thread_detach(&_tc_thread);
+        rt_sem_detach(&_tc_sem);
+
+        /* unlock scheduler */
+        rt_exit_critical();
+    }
+    rt_thread_delay(RT_TICK_PER_SECOND/2);
 }
 FINSH_FUNCTION_EXPORT(tc_stop, stop testcase thread);
 
 void tc_done(rt_uint8_t stat)
 {
-	_tc_stat |= stat;
-	_tc_stat &= ~TC_STAT_RUNNING;
+    _tc_stat |= stat;
+    _tc_stat &= ~TC_STAT_RUNNING;
 
-	/* release semaphore */
-	rt_sem_release(&_tc_sem);
+    /* release semaphore */
+    rt_sem_release(&_tc_sem);
 }
 
 void tc_stat(rt_uint8_t stat)
 {
-	if (stat & TC_STAT_FAILED)
-	{
-		rt_kprintf("TestCases[%s] failed\n", _tc_current);
-	}
-	_tc_stat |= stat;
+    if (stat & TC_STAT_FAILED)
+    {
+        rt_kprintf("TestCases[%s] failed\n", _tc_current);
+    }
+    _tc_stat |= stat;
 }
 
 void tc_cleanup(void (*cleanup)())
 {
-	_tc_cleanup = cleanup;
+    _tc_cleanup = cleanup;
 }
 
 void tc_start(const char* tc_prefix)
 {
-	rt_err_t result;
-
-	/* tesecase prefix is null */
-	if (tc_prefix == RT_NULL)
-	{
-		rt_kprintf("TestCase Usage: tc_start(prefix)\n\n");
-		rt_kprintf("list_tc() can list all testcases.\n");
-		return ;
-	}
-
-	/* init tc thread */
-	if (_tc_stat & TC_STAT_RUNNING)
-	{
-		/* stop old tc thread */
-		tc_stop();
-	}
-
-	rt_memset(_tc_prefix, 0, sizeof(_tc_prefix));
-	rt_snprintf(_tc_prefix, sizeof(_tc_prefix), "_tc_%s", tc_prefix);
-
-	result = rt_thread_init(&_tc_thread, "tc",
-		tc_thread_entry, RT_NULL,
-		&_tc_stack[0], sizeof(_tc_stack),
-		TC_PRIORITY - 3, 5);
-
-	/* set tc stat */
-	_tc_stat = TC_STAT_RUNNING | TC_STAT_FAILED;
-
-	if (result == RT_EOK)
-		rt_thread_startup(&_tc_thread);
+    rt_err_t result;
+
+    /* tesecase prefix is null */
+    if (tc_prefix == RT_NULL)
+    {
+        rt_kprintf("TestCase Usage: tc_start(prefix)\n\n");
+        rt_kprintf("list_tc() can list all testcases.\n");
+        return ;
+    }
+
+    /* init tc thread */
+    if (_tc_stat & TC_STAT_RUNNING)
+    {
+        /* stop old tc thread */
+        tc_stop();
+    }
+
+    rt_memset(_tc_prefix, 0, sizeof(_tc_prefix));
+    rt_snprintf(_tc_prefix, sizeof(_tc_prefix), "_tc_%s", tc_prefix);
+
+    result = rt_thread_init(&_tc_thread, "tc",
+        tc_thread_entry, RT_NULL,
+        &_tc_stack[0], sizeof(_tc_stack),
+        TC_PRIORITY - 3, 5);
+
+    /* set tc stat */
+    _tc_stat = TC_STAT_RUNNING | TC_STAT_FAILED;
+
+    if (result == RT_EOK)
+        rt_thread_startup(&_tc_thread);
 }
 FINSH_FUNCTION_EXPORT(tc_start, start testcase with testcase prefix or name);
 
 void list_tc()
 {
-	struct finsh_syscall* index;
-
-	rt_kprintf("TestCases List:\n");
-	for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
-	{
-		/* search testcase */
-		if (rt_strstr(index->name, "_tc_") == index->name)
-		{
+    struct finsh_syscall* index;
+
+    rt_kprintf("TestCases List:\n");
+    for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
+    {
+        /* search testcase */
+        if (rt_strstr(index->name, "_tc_") == index->name)
+        {
 #ifdef FINSH_USING_DESCRIPTION
-			rt_kprintf("%-16s -- %s\n", index->name + 4, index->desc);
+            rt_kprintf("%-16s -- %s\n", index->name + 4, index->desc);
 #else
-			rt_kprintf("%s\n", index->name + 4);
+            rt_kprintf("%s\n", index->name + 4);
 #endif
-		}
-	}
+        }
+    }
 }
 FINSH_FUNCTION_EXPORT(list_tc, list all testcases);
 #endif

+ 9 - 9
examples/kernel/tc_comm.h

@@ -11,19 +11,19 @@
 #endif
 
 #if RT_THREAD_PRIORITY_MAX == 8
-#define THREAD_PRIORITY		6
+#define THREAD_PRIORITY        6
 #elif RT_THREAD_PRIORITY_MAX == 32
-#define THREAD_PRIORITY		25
+#define THREAD_PRIORITY        25
 #elif RT_THREAD_PRIORITY_MAX == 256
-#define THREAD_PRIORITY		200
+#define THREAD_PRIORITY        200
 #endif
-#define THREAD_STACK_SIZE	512
-#define THREAD_TIMESLICE	5
+#define THREAD_STACK_SIZE    512
+#define THREAD_TIMESLICE    5
 
-#define TC_STAT_END		0x00
-#define TC_STAT_RUNNING	0x01
-#define TC_STAT_FAILED	0x10
-#define TC_STAT_PASSED	0x00
+#define TC_STAT_END        0x00
+#define TC_STAT_RUNNING    0x01
+#define TC_STAT_FAILED    0x10
+#define TC_STAT_PASSED    0x00
 
 #ifdef RT_USING_TC
 void tc_start(const char* tc_prefix);

+ 30 - 30
examples/kernel/tc_sample.c

@@ -4,59 +4,59 @@
 static rt_thread_t tid = RT_NULL;
 static void sample_thread(void* parameter)
 {
-	rt_kprintf("I'm sample!\n");
+    rt_kprintf("I'm sample!\n");
 }
 static void sample_thread_cleanup(struct rt_thread *p)
 {
-	tid = RT_NULL;
-	tc_done(TC_STAT_PASSED);
+    tid = RT_NULL;
+    tc_done(TC_STAT_PASSED);
 }
 
 int sample_init()
 {
-	tid = rt_thread_create("t",
-		sample_thread, RT_NULL,
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid != RT_NULL)
-	{
-		rt_thread_startup(tid);
-		tid->cleanup = sample_thread_cleanup;
-	}
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    tid = rt_thread_create("t",
+        sample_thread, RT_NULL,
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid != RT_NULL)
+    {
+        rt_thread_startup(tid);
+        tid->cleanup = sample_thread_cleanup;
+    }
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	return 0;
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* lock scheduler */
-	rt_enter_critical();
-	/* delete thread */
-	if (tid != RT_NULL)
-	{
-		rt_kprintf("tid1 is bad\n");
-		tc_stat(TC_STAT_FAILED);
-	}
-	/* unlock scheduler */
-	rt_exit_critical();
+    /* lock scheduler */
+    rt_enter_critical();
+    /* delete thread */
+    if (tid != RT_NULL)
+    {
+        rt_kprintf("tid1 is bad\n");
+        tc_stat(TC_STAT_FAILED);
+    }
+    /* unlock scheduler */
+    rt_exit_critical();
 }
 
 int _tc_sample()
 {
-	/* set tc cleanup */
-	tc_cleanup(_tc_cleanup);
-	sample_init();
+    /* set tc cleanup */
+    tc_cleanup(_tc_cleanup);
+    sample_init();
 
-	return 25;
+    return 25;
 }
 FINSH_FUNCTION_EXPORT(_tc_sample, a thread testcase example);
 #else
 int rt_application_init()
 {
-	sample_init();
+    sample_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 35 - 35
examples/kernel/thread_delay.c

@@ -8,63 +8,63 @@ static struct rt_thread thread;
 static char thread_stack[THREAD_STACK_SIZE];
 static void thread_entry(void* parameter)
 {
-	rt_tick_t tick;
-	rt_kprintf("thread inited ok\n");
+    rt_tick_t tick;
+    rt_kprintf("thread inited ok\n");
 
-	rt_kprintf("thread delay 10 tick\n");
-	tick = rt_tick_get();
-	rt_thread_delay(10);
-	if (rt_tick_get() - tick > 10)
-	{
-		tc_done(TC_STAT_FAILED);
-		return;
-	}
+    rt_kprintf("thread delay 10 tick\n");
+    tick = rt_tick_get();
+    rt_thread_delay(10);
+    if (rt_tick_get() - tick > 10)
+    {
+        tc_done(TC_STAT_FAILED);
+        return;
+    }
 
-	rt_kprintf("thread delay 15 tick\n");
-	tick = rt_tick_get();
-	rt_thread_delay(15);
-	if (rt_tick_get() - tick > 15)
-	{
-		tc_done(TC_STAT_FAILED);
-		return;
-	}
+    rt_kprintf("thread delay 15 tick\n");
+    tick = rt_tick_get();
+    rt_thread_delay(15);
+    if (rt_tick_get() - tick > 15)
+    {
+        tc_done(TC_STAT_FAILED);
+        return;
+    }
 
-	rt_kprintf("thread exit\n");
+    rt_kprintf("thread exit\n");
 
-	tc_done(TC_STAT_PASSED);
+    tc_done(TC_STAT_PASSED);
 }
 
 rt_err_t thread_delay_init()
 {
-	rt_err_t result;
+    rt_err_t result;
 
-	result = rt_thread_init(&thread,
-		"test",
-		thread_entry, RT_NULL,
-		&thread_stack[0], sizeof(thread_stack),
-		THREAD_PRIORITY, 10);
+    result = rt_thread_init(&thread,
+        "test",
+        thread_entry, RT_NULL,
+        &thread_stack[0], sizeof(thread_stack),
+        THREAD_PRIORITY, 10);
 
-	if (result == RT_EOK)
-		rt_thread_startup(&thread);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    if (result == RT_EOK)
+        rt_thread_startup(&thread);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	return result;
+    return result;
 }
 
 #ifdef RT_USING_TC
 int _tc_thread_delay()
 {
-	thread_delay_init();
+    thread_delay_init();
 
-	return 30;
+    return 30;
 }
 FINSH_FUNCTION_EXPORT(_tc_thread_delay, a thread delay test);
 #else
 int rt_application_init()
 {
-	thread_delay_init();
+    thread_delay_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 91 - 91
examples/kernel/thread_delete.c

@@ -15,128 +15,128 @@ static rt_thread_t tid1 = RT_NULL, tid2 = RT_NULL;
 /* 线程1的入口函数 */
 static void thread1_entry(void* parameter)
 {
-	rt_uint32_t count = 0;
-
-	while (1)
-	{
-		/* 线程1采用低优先级运行,一直打印计数值 */
-		// rt_kprintf("thread count: %d\n", count ++);
-		count ++;
-	}
+    rt_uint32_t count = 0;
+
+    while (1)
+    {
+        /* 线程1采用低优先级运行,一直打印计数值 */
+        // rt_kprintf("thread count: %d\n", count ++);
+        count ++;
+    }
 }
 static void thread1_cleanup(struct rt_thread *tid)
 {
-	if (tid != tid1)
-	{
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-		return ;
-	}
-	rt_kprintf("thread1 end\n");
-	tid1 = RT_NULL;
+    if (tid != tid1)
+    {
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+        return ;
+    }
+    rt_kprintf("thread1 end\n");
+    tid1 = RT_NULL;
 }
 
 /* 线程2的入口函数 */
 static void thread2_entry(void* parameter)
 {
-	/* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
-
-	/* 线程2启动后先睡眠10个OS Tick */
-	rt_thread_delay(RT_TICK_PER_SECOND);
-
-	/*
-	 * 线程2唤醒后直接删除线程1,删除线程1后,线程1自动脱离就绪线程
-	 * 队列
-	 */
-	rt_thread_delete(tid1);
-
-	/*
-	 * 线程2继续休眠10个OS Tick然后退出,线程2休眠后应切换到idle线程
-	 * idle线程将执行真正的线程1控制块和线程栈的删除
-	 */
-	rt_thread_delay(RT_TICK_PER_SECOND);
+    /* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
+
+    /* 线程2启动后先睡眠10个OS Tick */
+    rt_thread_delay(RT_TICK_PER_SECOND);
+
+    /*
+     * 线程2唤醒后直接删除线程1,删除线程1后,线程1自动脱离就绪线程
+     * 队列
+     */
+    rt_thread_delete(tid1);
+
+    /*
+     * 线程2继续休眠10个OS Tick然后退出,线程2休眠后应切换到idle线程
+     * idle线程将执行真正的线程1控制块和线程栈的删除
+     */
+    rt_thread_delay(RT_TICK_PER_SECOND);
 }
 
 static void thread2_cleanup(struct rt_thread *tid)
 {
-	/*
-	 * 线程2运行结束后也将自动被删除(线程控制块和线程栈在idle线
-	 * 程中释放)
-	 */
-
-	if (tid != tid2)
-	{
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-		return ;
-	}
-	rt_kprintf("thread2 end\n");
-	tid2 = RT_NULL;
-	tc_done(TC_STAT_PASSED);
+    /*
+     * 线程2运行结束后也将自动被删除(线程控制块和线程栈在idle线
+     * 程中释放)
+     */
+
+    if (tid != tid2)
+    {
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+        return ;
+    }
+    rt_kprintf("thread2 end\n");
+    tid2 = RT_NULL;
+    tc_done(TC_STAT_PASSED);
 }
 
 /* 线程删除示例的初始化 */
 int thread_delete_init()
 {
-	/* 创建线程1 */
-	tid1 = rt_thread_create("t1", /* 线程1的名称是t1 */
-		thread1_entry, RT_NULL,   /* 入口是thread1_entry,参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid1 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
-	{
-		tid1->cleanup = thread1_cleanup;
-		rt_thread_startup(tid1);
-	}
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	/* 创建线程1 */
-	tid2 = rt_thread_create("t2", /* 线程1的名称是t2 */
-		thread2_entry, RT_NULL,   /* 入口是thread2_entry,参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
-	if (tid2 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
-	{
-		tid2->cleanup = thread2_cleanup;
-		rt_thread_startup(tid2);
-	}
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 10 * RT_TICK_PER_SECOND;
+    /* 创建线程1 */
+    tid1 = rt_thread_create("t1", /* 线程1的名称是t1 */
+        thread1_entry, RT_NULL,   /* 入口是thread1_entry,参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid1 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
+    {
+        tid1->cleanup = thread1_cleanup;
+        rt_thread_startup(tid1);
+    }
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    /* 创建线程1 */
+    tid2 = rt_thread_create("t2", /* 线程1的名称是t2 */
+        thread2_entry, RT_NULL,   /* 入口是thread2_entry,参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+    if (tid2 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
+    {
+        tid2->cleanup = thread2_cleanup;
+        rt_thread_startup(tid2);
+    }
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 10 * RT_TICK_PER_SECOND;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* lock scheduler */
-	rt_enter_critical();
-
-	/* delete thread */
-	if (tid1 != RT_NULL)
-	{
-		rt_kprintf("tid1 is %p, should be NULL\n", tid1);
-		tc_stat(TC_STAT_FAILED);
-	}
-	if (tid2 != RT_NULL)
-	{
-		rt_kprintf("tid2 is %p, should be NULL\n", tid2);
-		tc_stat(TC_STAT_FAILED);
-	}
-
-	/* unlock scheduler */
-	rt_exit_critical();
+    /* lock scheduler */
+    rt_enter_critical();
+
+    /* delete thread */
+    if (tid1 != RT_NULL)
+    {
+        rt_kprintf("tid1 is %p, should be NULL\n", tid1);
+        tc_stat(TC_STAT_FAILED);
+    }
+    if (tid2 != RT_NULL)
+    {
+        rt_kprintf("tid2 is %p, should be NULL\n", tid2);
+        tc_stat(TC_STAT_FAILED);
+    }
+
+    /* unlock scheduler */
+    rt_exit_critical();
 }
 
 int _tc_thread_delete()
 {
-	/* set tc cleanup */
-	tc_cleanup(_tc_cleanup);
-	return thread_delete_init();
+    /* set tc cleanup */
+    tc_cleanup(_tc_cleanup);
+    return thread_delete_init();
 }
 FINSH_FUNCTION_EXPORT(_tc_thread_delete, a thread delete example);
 #else
 int rt_application_init()
 {
-	thread_delete_init();
+    thread_delete_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 61 - 61
examples/kernel/thread_detach.c

@@ -18,92 +18,92 @@ static rt_uint8_t thread2_stack[THREAD_STACK_SIZE];
 /* 线程1入口 */
 static void thread1_entry(void* parameter)
 {
-	rt_uint32_t count = 0;
+    rt_uint32_t count = 0;
 
-	while (1)
-	{
-		/* 线程1采用低优先级运行,一直打印计数值 */
-		rt_kprintf("thread count: %d\n", count ++);
-	}
+    while (1)
+    {
+        /* 线程1采用低优先级运行,一直打印计数值 */
+        rt_kprintf("thread count: %d\n", count ++);
+    }
 }
 
 /* 线程2入口 */
 static void thread2_entry(void* parameter)
 {
-	/* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
+    /* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
 
-	/* 线程2启动后先睡眠10个OS Tick */
-	rt_thread_delay(10);
+    /* 线程2启动后先睡眠10个OS Tick */
+    rt_thread_delay(10);
 
-	/*
-	 * 线程2唤醒后直接执行线程1脱离,线程1将从就绪线程队列中删除
-	 */
-	rt_thread_detach(&thread1);
+    /*
+     * 线程2唤醒后直接执行线程1脱离,线程1将从就绪线程队列中删除
+     */
+    rt_thread_detach(&thread1);
 
-	/*
-	 * 线程2继续休眠10个OS Tick然后退出
-	 */
-	rt_thread_delay(10);
+    /*
+     * 线程2继续休眠10个OS Tick然后退出
+     */
+    rt_thread_delay(10);
 
-	/*
-	 * 线程2运行结束后也将自动被从就绪队列中删除,并脱离线程队列
-	 */
+    /*
+     * 线程2运行结束后也将自动被从就绪队列中删除,并脱离线程队列
+     */
 }
 
 int thread_detach_init()
 {
-	rt_err_t result;
-
-	/* 初始化线程1 */
-	result = rt_thread_init(&thread1, "t1", /* 线程名:t1 */
-		thread1_entry, RT_NULL, /* 线程的入口是thread1_entry,入口参数是RT_NULL*/
-		&thread1_stack[0], sizeof(thread1_stack), /* 线程栈是thread1_stack */
-		THREAD_PRIORITY, 10);
-	if (result == RT_EOK) /* 如果返回正确,启动线程1 */
-		rt_thread_startup(&thread1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	/* 初始化线程2 */
-	result = rt_thread_init(&thread2, "t2", /* 线程名:t2 */
-		thread2_entry, RT_NULL, /* 线程的入口是thread2_entry,入口参数是RT_NULL*/
-		&thread2_stack[0], sizeof(thread2_stack), /* 线程栈是thread2_stack */
-		THREAD_PRIORITY - 1, 10);
-	if (result == RT_EOK) /* 如果返回正确,启动线程2 */
-		rt_thread_startup(&thread2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    rt_err_t result;
+
+    /* 初始化线程1 */
+    result = rt_thread_init(&thread1, "t1", /* 线程名:t1 */
+        thread1_entry, RT_NULL, /* 线程的入口是thread1_entry,入口参数是RT_NULL*/
+        &thread1_stack[0], sizeof(thread1_stack), /* 线程栈是thread1_stack */
+        THREAD_PRIORITY, 10);
+    if (result == RT_EOK) /* 如果返回正确,启动线程1 */
+        rt_thread_startup(&thread1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    /* 初始化线程2 */
+    result = rt_thread_init(&thread2, "t2", /* 线程名:t2 */
+        thread2_entry, RT_NULL, /* 线程的入口是thread2_entry,入口参数是RT_NULL*/
+        &thread2_stack[0], sizeof(thread2_stack), /* 线程栈是thread2_stack */
+        THREAD_PRIORITY - 1, 10);
+    if (result == RT_EOK) /* 如果返回正确,启动线程2 */
+        rt_thread_startup(&thread2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 执行线程脱离 */
-	if (thread1.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread1);
-	if (thread2.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread2);
+    /* 执行线程脱离 */
+    if (thread1.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread1);
+    if (thread2.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_detach()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	thread_detach_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    thread_detach_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 25;
+    /* 返回TestCase运行的最长时间 */
+    return 25;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_detach, a static thread example);
@@ -111,8 +111,8 @@ FINSH_FUNCTION_EXPORT(_tc_thread_detach, a static thread example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	thread_detach_init();
+    thread_detach_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 17 - 17
examples/kernel/thread_dynamic.c

@@ -3,42 +3,42 @@
 
 static void thread_entry(void* parameter)
 {
-	rt_kprintf("thread dynamicly created ok\n");
-	rt_thread_delay(10);
-	rt_kprintf("thread exit\n");
+    rt_kprintf("thread dynamicly created ok\n");
+    rt_thread_delay(10);
+    rt_kprintf("thread exit\n");
 
-	tc_done(TC_STAT_PASSED);
+    tc_done(TC_STAT_PASSED);
 }
 
 int thread_dynamic_init()
 {
-	rt_thread_t tid;
+    rt_thread_t tid;
 
-	tid = rt_thread_create("test",
-		thread_entry, RT_NULL,
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid != RT_NULL)
-		rt_thread_startup(tid);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    tid = rt_thread_create("test",
+        thread_entry, RT_NULL,
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid != RT_NULL)
+        rt_thread_startup(tid);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	return 0;
+    return 0;
 }
 
 #ifdef RT_USING_TC
 int _tc_thread_dynamic()
 {
-	thread_dynamic_init();
+    thread_dynamic_init();
 
-	return 20;
+    return 20;
 }
 FINSH_FUNCTION_EXPORT(_tc_thread_dynamic, a dynamic thread test);
 #else
 int rt_application_init()
 {
-	thread_dynamic_init();
+    thread_dynamic_init();
 
-	return 0;
+    return 0;
 }
 #endif
 

+ 44 - 44
examples/kernel/thread_dynamic_simple.c

@@ -12,69 +12,69 @@ static rt_thread_t tid2 = RT_NULL;
 /* 线程入口 */
 static void thread_entry(void* parameter)
 {
-	rt_uint32_t count = 0;
-	rt_uint32_t no = (rt_uint32_t) parameter; /* 获得正确的入口参数 */
+    rt_uint32_t count = 0;
+    rt_uint32_t no = (rt_uint32_t) parameter; /* 获得正确的入口参数 */
 
-	while (1)
-	{
-		/* 打印线程计数值输出 */
-		rt_kprintf("thread%d count: %d\n", no, count ++);
+    while (1)
+    {
+        /* 打印线程计数值输出 */
+        rt_kprintf("thread%d count: %d\n", no, count ++);
 
-		/* 休眠10个OS Tick */
-		rt_thread_delay(10);
-	}
+        /* 休眠10个OS Tick */
+        rt_thread_delay(10);
+    }
 }
 
 int thread_dynamic_simple_init()
 {
-	/* 创建线程1 */
-	tid1 = rt_thread_create("t1",
-		thread_entry, (void*)1, /* 线程入口是thread_entry, 入口参数是1 */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid1 != RT_NULL)
-		rt_thread_startup(tid1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 创建线程1 */
+    tid1 = rt_thread_create("t1",
+        thread_entry, (void*)1, /* 线程入口是thread_entry, 入口参数是1 */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid1 != RT_NULL)
+        rt_thread_startup(tid1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	/* 创建线程2 */
-	tid2 = rt_thread_create("t2",
-		thread_entry, (void*)2, /* 线程入口是thread_entry, 入口参数是2 */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid2 != RT_NULL)
-		rt_thread_startup(tid2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 创建线程2 */
+    tid2 = rt_thread_create("t2",
+        thread_entry, (void*)2, /* 线程入口是thread_entry, 入口参数是2 */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid2 != RT_NULL)
+        rt_thread_startup(tid2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	return 0;
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除线程 */
-	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid1);
-	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid2);
+    /* 删除线程 */
+    if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid1);
+    if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_dynamic_simple()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	thread_dynamic_simple_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    thread_dynamic_simple_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_dynamic_simple, a dynamic thread example);
@@ -82,8 +82,8 @@ FINSH_FUNCTION_EXPORT(_tc_thread_dynamic_simple, a dynamic thread example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	thread_dynamic_simple_init();
+    thread_dynamic_simple_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 61 - 61
examples/kernel/thread_priority.c

@@ -12,94 +12,94 @@ static rt_uint32_t count = 0;
  */
 static void thread1_entry(void* parameter)
 {
-	while (1)
-	{
-		count ++;
-		rt_kprintf("count = %d\n", count);
+    while (1)
+    {
+        count ++;
+        rt_kprintf("count = %d\n", count);
 
-		rt_thread_delay(10);
-	}
+        rt_thread_delay(10);
+    }
 }
 
 static void thread2_entry(void* parameter)
 {
-	rt_tick_t tick;
-
-	tick = rt_tick_get();
-	while (1)
-	{
-		if (rt_tick_get() - tick >= 50)
-		{
-			if (count == 0)
-				tc_done(TC_STAT_FAILED);
-			else
-				tc_done(TC_STAT_PASSED);
-
-			break;
-		}
-	}
+    rt_tick_t tick;
+
+    tick = rt_tick_get();
+    while (1)
+    {
+        if (rt_tick_get() - tick >= 50)
+        {
+            if (count == 0)
+                tc_done(TC_STAT_FAILED);
+            else
+                tc_done(TC_STAT_PASSED);
+
+            break;
+        }
+    }
 }
 
 int thread_priority_init()
 {
-	rt_err_t result;
-
-	result = rt_thread_init(&thread1,
-		"t1",
-		thread1_entry, RT_NULL,
-		&thread1_stack[0], sizeof(thread1_stack),
-		THREAD_PRIORITY - 1, THREAD_TIMESLICE);
-	
-	if (result == RT_EOK)
-		rt_thread_startup(&thread1);
-	else
-		tc_stat(TC_STAT_FAILED);
-
-	rt_thread_init(&thread2,
-		"t2",
-		thread2_entry, RT_NULL,
-		&thread2_stack[0], sizeof(thread2_stack),
-		THREAD_PRIORITY + 1, THREAD_TIMESLICE);
-
-	if (result == RT_EOK)
-		rt_thread_startup(&thread2);
-	else
-		tc_stat(TC_STAT_FAILED);
-
-	return 0;
+    rt_err_t result;
+
+    result = rt_thread_init(&thread1,
+        "t1",
+        thread1_entry, RT_NULL,
+        &thread1_stack[0], sizeof(thread1_stack),
+        THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+    
+    if (result == RT_EOK)
+        rt_thread_startup(&thread1);
+    else
+        tc_stat(TC_STAT_FAILED);
+
+    rt_thread_init(&thread2,
+        "t2",
+        thread2_entry, RT_NULL,
+        &thread2_stack[0], sizeof(thread2_stack),
+        THREAD_PRIORITY + 1, THREAD_TIMESLICE);
+
+    if (result == RT_EOK)
+        rt_thread_startup(&thread2);
+    else
+        tc_stat(TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* lock scheduler */
-	rt_enter_critical();
+    /* lock scheduler */
+    rt_enter_critical();
 
-	if (thread1.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread1);
-	if (thread2.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread2);
+    if (thread1.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread1);
+    if (thread2.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread2);
 
-	/* unlock scheduler */
-	rt_exit_critical();
+    /* unlock scheduler */
+    rt_exit_critical();
 }
 int _tc_thread_priority()
 {
-	count = 0;
+    count = 0;
 
-	/* set tc cleanup */
-	tc_cleanup(_tc_cleanup);
-	thread_priority_init();
+    /* set tc cleanup */
+    tc_cleanup(_tc_cleanup);
+    thread_priority_init();
 
-	return RT_TICK_PER_SECOND;
+    return RT_TICK_PER_SECOND;
 }
 FINSH_FUNCTION_EXPORT(_tc_thread_priority, a priority thread test);
 #else
 int rt_application_init()
 {
-	thread_priority_init();
+    thread_priority_init();
 
-	return 0;
+    return 0;
 }
 #endif
 

+ 68 - 68
examples/kernel/thread_resume.c

@@ -13,102 +13,102 @@ static rt_thread_t tid2 = RT_NULL;
 /* 线程1入口 */
 static void thread1_entry(void* parameter)
 {
-	/* 低优先级线程1开始运行 */
-	rt_kprintf("thread1 startup%d\n");
+    /* 低优先级线程1开始运行 */
+    rt_kprintf("thread1 startup%d\n");
 
-	/* 挂起自身 */
-	rt_kprintf("suspend thread self\n");
-	rt_thread_suspend(tid1);
-	/* 主动执行线程调度 */
-	rt_schedule();
+    /* 挂起自身 */
+    rt_kprintf("suspend thread self\n");
+    rt_thread_suspend(tid1);
+    /* 主动执行线程调度 */
+    rt_schedule();
 
-	/* 当线程1被唤醒时 */
-	rt_kprintf("thread1 resumed\n");
+    /* 当线程1被唤醒时 */
+    rt_kprintf("thread1 resumed\n");
 }
 static void thread_cleanup(rt_thread_t tid)
 {
-	if (tid == tid1)
-	{
-		tid1 = RT_NULL;
-	}
-	if (tid == tid2)
-	{
-		tid = RT_NULL;
-	}
+    if (tid == tid1)
+    {
+        tid1 = RT_NULL;
+    }
+    if (tid == tid2)
+    {
+        tid = RT_NULL;
+    }
 }
 
 /* 线程2入口 */
 static void thread2_entry(void* parameter)
 {
-	/* 延时10个OS Tick */
-	rt_thread_delay(10);
+    /* 延时10个OS Tick */
+    rt_thread_delay(10);
 
-	/* 唤醒线程1 */
-	rt_thread_resume(tid1);
-	rt_kprintf("thread2: to resume thread1\n");
+    /* 唤醒线程1 */
+    rt_thread_resume(tid1);
+    rt_kprintf("thread2: to resume thread1\n");
 
-	/* 延时10个OS Tick */
-	rt_thread_delay(10);
+    /* 延时10个OS Tick */
+    rt_thread_delay(10);
 
-	/* 线程2自动退出 */
+    /* 线程2自动退出 */
 }
 
 int thread_resume_init()
 {
-	/* 创建线程1 */
-	tid1 = rt_thread_create("thread",
-		thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid1 != RT_NULL)
-	{
-		tid1->cleanup = thread_cleanup;
-		rt_thread_startup(tid1);
-	}
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	/* 创建线程2 */
-	tid2 = rt_thread_create("thread",
-		thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
-	if (tid2 != RT_NULL)
-	{
-		tid2->cleanup = thread_cleanup;
-		rt_thread_startup(tid2);
-	}
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    /* 创建线程1 */
+    tid1 = rt_thread_create("thread",
+        thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid1 != RT_NULL)
+    {
+        tid1->cleanup = thread_cleanup;
+        rt_thread_startup(tid1);
+    }
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    /* 创建线程2 */
+    tid2 = rt_thread_create("thread",
+        thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+    if (tid2 != RT_NULL)
+    {
+        tid2->cleanup = thread_cleanup;
+        rt_thread_startup(tid2);
+    }
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除线程 */
-	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid1);
-	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid2);
+    /* 删除线程 */
+    if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid1);
+    if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_resume()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	thread_resume_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    thread_resume_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 25;
+    /* 返回TestCase运行的最长时间 */
+    return 25;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_resume, a thread resume example);
@@ -116,8 +116,8 @@ FINSH_FUNCTION_EXPORT(_tc_thread_resume, a thread resume example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	thread_resume_init();
+    thread_resume_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 52 - 52
examples/kernel/thread_same_priority.c

@@ -10,87 +10,87 @@ volatile static rt_uint32_t t1_count = 0;
 volatile static rt_uint32_t t2_count = 0;
 static void thread1_entry(void* parameter)
 {
-	while (1)
-	{
-		t1_count ++;
-	}
+    while (1)
+    {
+        t1_count ++;
+    }
 }
 
 static void thread2_entry(void* parameter)
 {
-	while (1)
-	{
-		t2_count ++;
-	}
+    while (1)
+    {
+        t2_count ++;
+    }
 }
 
 rt_err_t thread_same_priority_init()
 {
-	rt_err_t result;
-
-	result = rt_thread_init(&thread1,
-		"t1",
-		thread1_entry, RT_NULL,
-		&thread1_stack[0], sizeof(thread1_stack),
-		THREAD_PRIORITY, 10);
-	if (result == RT_EOK)
-		rt_thread_startup(&thread1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	result = rt_thread_init(&thread2,
-		"t2",
-		thread2_entry, RT_NULL,
-		&thread2_stack[0], sizeof(thread2_stack),
-		THREAD_PRIORITY, 5);
-	if (result == RT_EOK)
-		rt_thread_startup(&thread2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return result;
+    rt_err_t result;
+
+    result = rt_thread_init(&thread1,
+        "t1",
+        thread1_entry, RT_NULL,
+        &thread1_stack[0], sizeof(thread1_stack),
+        THREAD_PRIORITY, 10);
+    if (result == RT_EOK)
+        rt_thread_startup(&thread1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    result = rt_thread_init(&thread2,
+        "t2",
+        thread2_entry, RT_NULL,
+        &thread2_stack[0], sizeof(thread2_stack),
+        THREAD_PRIORITY, 5);
+    if (result == RT_EOK)
+        rt_thread_startup(&thread2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return result;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* lock scheduler */
-	rt_enter_critical();
+    /* lock scheduler */
+    rt_enter_critical();
 
-	if (thread1.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread1);
-	if (thread2.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread2);
+    if (thread1.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread1);
+    if (thread2.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread2);
 
-	/* unlock scheduler */
-	rt_exit_critical();
+    /* unlock scheduler */
+    rt_exit_critical();
 
-	rt_kprintf("t1_count=%d t2_count=%d\n",t1_count,t2_count);
+    rt_kprintf("t1_count=%d t2_count=%d\n",t1_count,t2_count);
 
-	if (t1_count / t2_count != 2)
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-	else
-		tc_done(TC_STAT_PASSED);
+    if (t1_count / t2_count != 2)
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    else
+        tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_same_priority()
 {
-	t1_count = 0;
-	t2_count = 0;
+    t1_count = 0;
+    t2_count = 0;
 
-	/* set tc cleanup */
-	tc_cleanup(_tc_cleanup);
+    /* set tc cleanup */
+    tc_cleanup(_tc_cleanup);
 
-	thread_same_priority_init();
+    thread_same_priority_init();
 
-	return 100;
+    return 100;
 }
 FINSH_FUNCTION_EXPORT(_tc_thread_same_priority, a same priority thread test);
 #else
 int rt_application_init()
 {
-	thread_same_priority_init();
+    thread_same_priority_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 19 - 19
examples/kernel/thread_static.c

@@ -8,45 +8,45 @@ static struct rt_thread thread;
 static char thread_stack[THREAD_STACK_SIZE];
 static void thread_entry(void* parameter)
 {
-	rt_kprintf("thread staticly inited ok\n");
-	rt_thread_delay(10);
-	rt_kprintf("thread exit\n");
+    rt_kprintf("thread staticly inited ok\n");
+    rt_thread_delay(10);
+    rt_kprintf("thread exit\n");
 
-	tc_done(TC_STAT_PASSED);
+    tc_done(TC_STAT_PASSED);
 }
 
 rt_err_t thread_static_init()
 {
-	rt_err_t result;
+    rt_err_t result;
 
-	result = rt_thread_init(&thread,
-		"test",
-		thread_entry, RT_NULL,
-		&thread_stack[0], sizeof(thread_stack),
-		THREAD_PRIORITY, 10);
+    result = rt_thread_init(&thread,
+        "test",
+        thread_entry, RT_NULL,
+        &thread_stack[0], sizeof(thread_stack),
+        THREAD_PRIORITY, 10);
 
-	if (result == RT_EOK)
-		rt_thread_startup(&thread);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    if (result == RT_EOK)
+        rt_thread_startup(&thread);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	return result;
+    return result;
 }
 
 #ifdef RT_USING_TC
 int _tc_thread_static()
 {
-	thread_static_init();
+    thread_static_init();
 
-	return 20;
+    return 20;
 }
 FINSH_FUNCTION_EXPORT(_tc_thread_static, a static thread test);
 #else
 int rt_application_init()
 {
-	thread_static_init();
+    thread_static_init();
 
-	return 0;
+    return 0;
 }
 #endif
 

+ 47 - 47
examples/kernel/thread_static_simple.c

@@ -18,73 +18,73 @@ static rt_uint8_t thread2_stack[THREAD_STACK_SIZE];
 /* 线程入口 */
 static void thread_entry(void* parameter)
 {
-	rt_uint32_t count = 0;
-	rt_uint32_t no = (rt_uint32_t) parameter; /* 获得正确的入口参数 */
+    rt_uint32_t count = 0;
+    rt_uint32_t no = (rt_uint32_t) parameter; /* 获得正确的入口参数 */
 
-	while (1)
-	{
-		/* 打印线程计数值输出 */
-		rt_kprintf("thread%d count: %d\n", no, count ++);
+    while (1)
+    {
+        /* 打印线程计数值输出 */
+        rt_kprintf("thread%d count: %d\n", no, count ++);
 
-		/* 休眠10个OS Tick */
-		rt_thread_delay(10);
-	}
+        /* 休眠10个OS Tick */
+        rt_thread_delay(10);
+    }
 }
 
 int thread_static_simple_init()
 {
-	rt_err_t result;
+    rt_err_t result;
 
-	/* 初始化线程1 */
-	result = rt_thread_init(&thread1, "t1", /* 线程名:t1 */
-		thread_entry, (void*)1, /* 线程的入口是thread_entry,入口参数是1 */
-		&thread1_stack[0], sizeof(thread1_stack), /* 线程栈是thread1_stack */
-		THREAD_PRIORITY, 10);
-	if (result == RT_EOK) /* 如果返回正确,启动线程1 */
-		rt_thread_startup(&thread1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 初始化线程1 */
+    result = rt_thread_init(&thread1, "t1", /* 线程名:t1 */
+        thread_entry, (void*)1, /* 线程的入口是thread_entry,入口参数是1 */
+        &thread1_stack[0], sizeof(thread1_stack), /* 线程栈是thread1_stack */
+        THREAD_PRIORITY, 10);
+    if (result == RT_EOK) /* 如果返回正确,启动线程1 */
+        rt_thread_startup(&thread1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	/* 初始化线程2 */
-	result = rt_thread_init(&thread2, "t2", /* 线程名:t2 */
-		thread_entry, RT_NULL, /* 线程的入口是thread_entry,入口参数是2 */
-		&thread2_stack[0], sizeof(thread2_stack), /* 线程栈是thread2_stack */
-		THREAD_PRIORITY + 1, 10);
-	if (result == RT_EOK) /* 如果返回正确,启动线程2 */
-		rt_thread_startup(&thread2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 初始化线程2 */
+    result = rt_thread_init(&thread2, "t2", /* 线程名:t2 */
+        thread_entry, RT_NULL, /* 线程的入口是thread_entry,入口参数是2 */
+        &thread2_stack[0], sizeof(thread2_stack), /* 线程栈是thread2_stack */
+        THREAD_PRIORITY + 1, 10);
+    if (result == RT_EOK) /* 如果返回正确,启动线程2 */
+        rt_thread_startup(&thread2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	return 0;
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 执行线程脱离 */
-	if (thread1.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread1);
-	if (thread2.stat != RT_THREAD_CLOSE)
-		rt_thread_detach(&thread2);
+    /* 执行线程脱离 */
+    if (thread1.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread1);
+    if (thread2.stat != RT_THREAD_CLOSE)
+        rt_thread_detach(&thread2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_static_simple()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	thread_static_simple_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    thread_static_simple_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_static_simple, a static thread example);
@@ -92,8 +92,8 @@ FINSH_FUNCTION_EXPORT(_tc_thread_static_simple, a static thread example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	thread_static_simple_init();
+    thread_static_simple_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 51 - 51
examples/kernel/thread_suspend.c

@@ -12,81 +12,81 @@ static rt_thread_t tid2 = RT_NULL;
 /* 线程1入口 */
 static void thread1_entry(void* parameter)
 {
-	rt_uint32_t count = 0;
+    rt_uint32_t count = 0;
 
-	while (1)
-	{
-		/* 线程1采用低优先级运行,一直打印计数值 */
-		rt_kprintf("thread count: %d\n", count ++);
-	}
+    while (1)
+    {
+        /* 线程1采用低优先级运行,一直打印计数值 */
+        rt_kprintf("thread count: %d\n", count ++);
+    }
 }
 
 /* 线程2入口 */
 static void thread2_entry(void* parameter)
 {
-	/* 延时10个OS Tick */
-	rt_thread_delay(10);
+    /* 延时10个OS Tick */
+    rt_thread_delay(10);
 
-	/* 挂起线程1 */
-	rt_thread_suspend(tid1);
+    /* 挂起线程1 */
+    rt_thread_suspend(tid1);
 
-	/* 延时10个OS Tick */
-	rt_thread_delay(10);
+    /* 延时10个OS Tick */
+    rt_thread_delay(10);
 
-	/* 线程2自动退出 */
-	tid2 = RT_NULL;
+    /* 线程2自动退出 */
+    tid2 = RT_NULL;
 }
 
 int thread_suspend_init()
 {
-	/* 创建线程1 */
-	tid1 = rt_thread_create("thread",
-		thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid1 != RT_NULL)
-		rt_thread_startup(tid1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	/* 创建线程2 */
-	tid2 = rt_thread_create("thread",
-		thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
-	if (tid2 != RT_NULL)
-		rt_thread_startup(tid2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    /* 创建线程1 */
+    tid1 = rt_thread_create("thread",
+        thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid1 != RT_NULL)
+        rt_thread_startup(tid1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    /* 创建线程2 */
+    tid2 = rt_thread_create("thread",
+        thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
+    if (tid2 != RT_NULL)
+        rt_thread_startup(tid2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除线程 */
-	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid1);
-	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid2);
+    /* 删除线程 */
+    if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid1);
+    if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_suspend()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	thread_suspend_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    thread_suspend_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_suspend, a thread suspend example);
@@ -94,8 +94,8 @@ FINSH_FUNCTION_EXPORT(_tc_thread_suspend, a thread suspend example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	thread_suspend_init();
+    thread_suspend_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 53 - 53
examples/kernel/thread_yield.c

@@ -10,83 +10,83 @@ static rt_thread_t tid2 = RT_NULL;
 /* 线程1入口 */
 static void thread1_entry(void* parameter)
 {
-	rt_uint32_t count = 0;
+    rt_uint32_t count = 0;
 
-	while (1)
-	{
-		/* 打印线程1的输出 */
-		rt_kprintf("thread1: count = %d\n", count ++);
+    while (1)
+    {
+        /* 打印线程1的输出 */
+        rt_kprintf("thread1: count = %d\n", count ++);
 
-		/* 执行yield后应该切换到thread2执行 */
-		rt_thread_yield();
-	}
+        /* 执行yield后应该切换到thread2执行 */
+        rt_thread_yield();
+    }
 }
 
 /* 线程2入口 */
 static void thread2_entry(void* parameter)
 {
-	rt_uint32_t count = 0;
+    rt_uint32_t count = 0;
 
-	while (1)
-	{
-		/* 打印线程2的输出 */
-		rt_kprintf("thread2: count = %d\n", count ++);
+    while (1)
+    {
+        /* 打印线程2的输出 */
+        rt_kprintf("thread2: count = %d\n", count ++);
 
-		/* 执行yield后应该切换到thread1执行 */
-		rt_thread_yield();
-	}
+        /* 执行yield后应该切换到thread1执行 */
+        rt_thread_yield();
+    }
 }
 
 int thread_yield_init()
 {
-	/* 创建线程1 */
-	tid1 = rt_thread_create("thread",
-		thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid1 != RT_NULL)
-		rt_thread_startup(tid1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	/* 创建线程2 */
-	tid2 = rt_thread_create("thread",
-		thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid2 != RT_NULL)
-		rt_thread_startup(tid2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    /* 创建线程1 */
+    tid1 = rt_thread_create("thread",
+        thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid1 != RT_NULL)
+        rt_thread_startup(tid1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    /* 创建线程2 */
+    tid2 = rt_thread_create("thread",
+        thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid2 != RT_NULL)
+        rt_thread_startup(tid2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除线程 */
-	if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid1);
-	if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid2);
+    /* 删除线程 */
+    if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid1);
+    if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_thread_yield()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	thread_yield_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    thread_yield_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 30;
+    /* 返回TestCase运行的最长时间 */
+    return 30;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_thread_yield, a thread yield example);
@@ -94,8 +94,8 @@ FINSH_FUNCTION_EXPORT(_tc_thread_yield, a thread yield example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	thread_yield_init();
+    thread_yield_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 40 - 40
examples/kernel/timer_control.c

@@ -13,63 +13,63 @@ static rt_uint8_t count;
 /* 定时器超时函数 */
 static void timeout1(void* parameter)
 {
-	rt_tick_t timeout = 50;
-	
-	rt_kprintf("periodic timer is timeout\n");
+    rt_tick_t timeout = 50;
+    
+    rt_kprintf("periodic timer is timeout\n");
 
-	count ++;
-	/* 停止定时器自身 */
-	if (count >= 8)
-	{
-		/* 控制定时器然后更改超时时间长度 */
-		rt_timer_control(timer1, RT_TIMER_CTRL_SET_TIME, (void *)&timeout);
-		count = 0;
-	}
+    count ++;
+    /* 停止定时器自身 */
+    if (count >= 8)
+    {
+        /* 控制定时器然后更改超时时间长度 */
+        rt_timer_control(timer1, RT_TIMER_CTRL_SET_TIME, (void *)&timeout);
+        count = 0;
+    }
 }
 
 void timer_control_init()
 {
-	/* 创建定时器1 */
-	timer1 = rt_timer_create("timer1",  /* 定时器名字是 timer1 */
-		timeout1, /* 超时时回调的处理函数 */
-		RT_NULL, /* 超时函数的入口参数 */
-		10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
-		RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
-	/* 启动定时器 */
-	if (timer1 != RT_NULL)
-		rt_timer_start(timer1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 创建定时器1 */
+    timer1 = rt_timer_create("timer1",  /* 定时器名字是 timer1 */
+        timeout1, /* 超时时回调的处理函数 */
+        RT_NULL, /* 超时函数的入口参数 */
+        10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
+        RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
+    /* 启动定时器 */
+    if (timer1 != RT_NULL)
+        rt_timer_start(timer1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除定时器对象 */
-	rt_timer_delete(timer1);
-	timer1 = RT_NULL;
+    /* 删除定时器对象 */
+    rt_timer_delete(timer1);
+    timer1 = RT_NULL;
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_timer_control()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
 
-	/* 执行定时器例程 */
-	count = 0;
-	timer_control_init();
+    /* 执行定时器例程 */
+    count = 0;
+    timer_control_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_timer_control, a timer control example);
@@ -77,8 +77,8 @@ FINSH_FUNCTION_EXPORT(_tc_timer_control, a timer control example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	timer_control_init();
+    timer_control_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 41 - 41
examples/kernel/timer_dynamic.c

@@ -13,70 +13,70 @@ static rt_timer_t timer2;
 /* 定时器1超时函数 */
 static void timeout1(void* parameter)
 {
-	rt_kprintf("periodic timer is timeout\n");
+    rt_kprintf("periodic timer is timeout\n");
 }
 
 /* 定时器2超时函数 */
 static void timeout2(void* parameter)
 {
-	rt_kprintf("one shot timer is timeout\n");
+    rt_kprintf("one shot timer is timeout\n");
 }
 
 void timer_create_init()
 {
-	/* 创建定时器1 */
-	timer1 = rt_timer_create("timer1",  /* 定时器名字是 timer1 */
-		timeout1, /* 超时时回调的处理函数 */
-		RT_NULL, /* 超时函数的入口参数 */
-		10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
-		RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
-	/* 启动定时器 */
-	if (timer1 != RT_NULL)
-		rt_timer_start(timer1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 创建定时器1 */
+    timer1 = rt_timer_create("timer1",  /* 定时器名字是 timer1 */
+        timeout1, /* 超时时回调的处理函数 */
+        RT_NULL, /* 超时函数的入口参数 */
+        10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
+        RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
+    /* 启动定时器 */
+    if (timer1 != RT_NULL)
+        rt_timer_start(timer1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 
-	/* 创建定时器2 */
-	timer2 = rt_timer_create("timer2",   /* 定时器名字是 timer2 */
-		timeout2, /* 超时时回调的处理函数 */
-		RT_NULL, /* 超时函数的入口参数 */
-		30, /* 定时长度为30个OS Tick */
-		RT_TIMER_FLAG_ONE_SHOT); /* 单次定时器 */
+    /* 创建定时器2 */
+    timer2 = rt_timer_create("timer2",   /* 定时器名字是 timer2 */
+        timeout2, /* 超时时回调的处理函数 */
+        RT_NULL, /* 超时函数的入口参数 */
+        30, /* 定时长度为30个OS Tick */
+        RT_TIMER_FLAG_ONE_SHOT); /* 单次定时器 */
 
-	/* 启动定时器 */
-	if (timer2 != RT_NULL)
-		rt_timer_start(timer2);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 启动定时器 */
+    if (timer2 != RT_NULL)
+        rt_timer_start(timer2);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除定时器对象 */
-	rt_timer_delete(timer1);
-	rt_timer_delete(timer2);
+    /* 删除定时器对象 */
+    rt_timer_delete(timer1);
+    rt_timer_delete(timer2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_timer_create()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
 
-	/* 执行定时器例程 */
-	timer_create_init();
+    /* 执行定时器例程 */
+    timer_create_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_timer_create, a dynamic timer example);
@@ -84,8 +84,8 @@ FINSH_FUNCTION_EXPORT(_tc_timer_create, a dynamic timer example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	timer_create_init();
+    timer_create_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 33 - 33
examples/kernel/timer_static.c

@@ -13,61 +13,61 @@ static struct rt_timer timer2;
 /* 定时器1超时函数 */
 static void timeout1(void* parameter)
 {
-	rt_kprintf("periodic timer is timeout\n");
+    rt_kprintf("periodic timer is timeout\n");
 }
 
 /* 定时器2超时函数 */
 static void timeout2(void* parameter)
 {
-	rt_kprintf("one shot timer is timeout\n");
+    rt_kprintf("one shot timer is timeout\n");
 }
 
 void timer_static_init()
 {
-	/* 初始化定时器 */
-	rt_timer_init(&timer1, "timer1",  /* 定时器名字是 timer1 */
-		timeout1, /* 超时时回调的处理函数 */
-		RT_NULL, /* 超时函数的入口参数 */
-		10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
-		RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
-	rt_timer_init(&timer2, "timer2",   /* 定时器名字是 timer2 */
-		timeout2, /* 超时时回调的处理函数 */
-		RT_NULL, /* 超时函数的入口参数 */
-		30, /* 定时长度为30个OS Tick */
-		RT_TIMER_FLAG_ONE_SHOT); /* 单次定时器 */
+    /* 初始化定时器 */
+    rt_timer_init(&timer1, "timer1",  /* 定时器名字是 timer1 */
+        timeout1, /* 超时时回调的处理函数 */
+        RT_NULL, /* 超时函数的入口参数 */
+        10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
+        RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
+    rt_timer_init(&timer2, "timer2",   /* 定时器名字是 timer2 */
+        timeout2, /* 超时时回调的处理函数 */
+        RT_NULL, /* 超时函数的入口参数 */
+        30, /* 定时长度为30个OS Tick */
+        RT_TIMER_FLAG_ONE_SHOT); /* 单次定时器 */
 
-	/* 启动定时器 */
-	rt_timer_start(&timer1);
-	rt_timer_start(&timer2);
+    /* 启动定时器 */
+    rt_timer_start(&timer1);
+    rt_timer_start(&timer2);
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 执行定时器脱离 */
-	rt_timer_detach(&timer1);
-	rt_timer_detach(&timer2);
+    /* 执行定时器脱离 */
+    rt_timer_detach(&timer1);
+    rt_timer_detach(&timer2);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_timer_static()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
 
-	/* 执行定时器例程 */
-	timer_static_init();
+    /* 执行定时器例程 */
+    timer_static_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_timer_static, a static timer example);
@@ -75,8 +75,8 @@ FINSH_FUNCTION_EXPORT(_tc_timer_static, a static timer example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	timer_static_init();
+    timer_static_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 38 - 38
examples/kernel/timer_stop_self.c

@@ -13,61 +13,61 @@ static rt_uint8_t count;
 /* 定时器超时函数 */
 static void timeout1(void* parameter)
 {
-	rt_kprintf("periodic timer is timeout\n");
+    rt_kprintf("periodic timer is timeout\n");
 
-	count ++;
-	/* 停止定时器自身 */
-	if (count >= 8)
-	{
-		/* 停止定时器 */
-		rt_timer_stop(timer1);
-		count = 0;
-	}
+    count ++;
+    /* 停止定时器自身 */
+    if (count >= 8)
+    {
+        /* 停止定时器 */
+        rt_timer_stop(timer1);
+        count = 0;
+    }
 }
 
 void timer_stop_self_init()
 {
-	/* 创建定时器1 */
-	timer1 = rt_timer_create("timer1",  /* 定时器名字是 timer1 */
-		timeout1, /* 超时时回调的处理函数 */
-		RT_NULL, /* 超时函数的入口参数 */
-		10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
-		RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
-	/* 启动定时器 */
-	if (timer1 != RT_NULL)
-		rt_timer_start(timer1);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
+    /* 创建定时器1 */
+    timer1 = rt_timer_create("timer1",  /* 定时器名字是 timer1 */
+        timeout1, /* 超时时回调的处理函数 */
+        RT_NULL, /* 超时函数的入口参数 */
+        10, /* 定时长度,以OS Tick为单位,即10个OS Tick */
+        RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
+    /* 启动定时器 */
+    if (timer1 != RT_NULL)
+        rt_timer_start(timer1);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除定时器对象 */
-	rt_timer_delete(timer1);
-	timer1 = RT_NULL;
+    /* 删除定时器对象 */
+    rt_timer_delete(timer1);
+    timer1 = RT_NULL;
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_timer_stop_self()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
 
-	/* 执行定时器例程 */
-	count = 0;
-	timer_stop_self_init();
+    /* 执行定时器例程 */
+    count = 0;
+    timer_stop_self_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_timer_stop_self, a dynamic timer example);
@@ -75,8 +75,8 @@ FINSH_FUNCTION_EXPORT(_tc_timer_stop_self, a dynamic timer example);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	timer_stop_self_init();
+    timer_stop_self_init();
 
-	return 0;
+    return 0;
 }
 #endif

+ 66 - 66
examples/kernel/timer_timeout.c

@@ -20,94 +20,94 @@ static struct rt_timer timer;
 static rt_uint16_t no = 0;
 static void timer_timeout(void* parameter)
 {
-	char buf[32];
-	rt_uint32_t length;
+    char buf[32];
+    rt_uint32_t length;
 
-	length = rt_snprintf(buf, sizeof(buf), "message %d", no++);
-	rt_mq_send(&mq, &buf[0], length);
+    length = rt_snprintf(buf, sizeof(buf), "message %d", no++);
+    rt_mq_send(&mq, &buf[0], length);
 }
 
 /* 线程入口函数 */
 static void thread_entry(void* parameter)
 {
-	char buf[64];
-	rt_err_t result;
-
-	/* 初始化定时器 */
-	rt_timer_init(&timer, "timer",  /* 定时器名字是 timer1 */
-		timer_timeout, /* 超时时回调的处理函数 */
-		RT_NULL, /* 超时函数的入口参数 */
-		1, /* 定时长度,以OS Tick为单位,即1个OS Tick */
-		RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
-
-	while (1)
-	{
-		rt_memset(&buf[0], 0, sizeof(buf));
-
-		/* 从消息队列中接收消息 */
-		result = rt_mq_recv(&mq, &buf[0], sizeof(buf), 1);
-		if (result == RT_EOK)
-		{
-			rt_kprintf("recv msg: %s\n", buf);
-		}
-		else if (result == -RT_ETIMEOUT)
-		{
-			rt_kprintf("recv msg timeout\n");
-		}
-	}
+    char buf[64];
+    rt_err_t result;
+
+    /* 初始化定时器 */
+    rt_timer_init(&timer, "timer",  /* 定时器名字是 timer1 */
+        timer_timeout, /* 超时时回调的处理函数 */
+        RT_NULL, /* 超时函数的入口参数 */
+        1, /* 定时长度,以OS Tick为单位,即1个OS Tick */
+        RT_TIMER_FLAG_PERIODIC); /* 周期性定时器 */
+
+    while (1)
+    {
+        rt_memset(&buf[0], 0, sizeof(buf));
+
+        /* 从消息队列中接收消息 */
+        result = rt_mq_recv(&mq, &buf[0], sizeof(buf), 1);
+        if (result == RT_EOK)
+        {
+            rt_kprintf("recv msg: %s\n", buf);
+        }
+        else if (result == -RT_ETIMEOUT)
+        {
+            rt_kprintf("recv msg timeout\n");
+        }
+    }
 }
 
 int timer_timeout_init()
 {
-	/* 初始化消息队列 */
-	rt_mq_init(&mq, "mqt", 
-		&msg_pool[0], /* 内存池指向msg_pool */ 
-		128 - sizeof(void*), /* 每个消息的大小是 128 - void* */
-		sizeof(msg_pool), /* 内存池的大小是msg_pool的大小 */
-		RT_IPC_FLAG_FIFO); /* 如果有多个线程等待,按照先来先得到的方法分配消息 */
-
-	/* 创建线程 */
-	tid = rt_thread_create("t",
-		thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
-		THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
-	if (tid != RT_NULL)
-		rt_thread_startup(tid);
-	else
-		tc_stat(TC_STAT_END | TC_STAT_FAILED);
-
-	return 0;
+    /* 初始化消息队列 */
+    rt_mq_init(&mq, "mqt", 
+        &msg_pool[0], /* 内存池指向msg_pool */ 
+        128 - sizeof(void*), /* 每个消息的大小是 128 - void* */
+        sizeof(msg_pool), /* 内存池的大小是msg_pool的大小 */
+        RT_IPC_FLAG_FIFO); /* 如果有多个线程等待,按照先来先得到的方法分配消息 */
+
+    /* 创建线程 */
+    tid = rt_thread_create("t",
+        thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
+        THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
+    if (tid != RT_NULL)
+        rt_thread_startup(tid);
+    else
+        tc_stat(TC_STAT_END | TC_STAT_FAILED);
+
+    return 0;
 }
 
 #ifdef RT_USING_TC
 static void _tc_cleanup()
 {
-	/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
-	rt_enter_critical();
+    /* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
+    rt_enter_critical();
 
-	/* 删除线程 */
-	if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
-		rt_thread_delete(tid);
+    /* 删除线程 */
+    if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
+        rt_thread_delete(tid);
 
-	/* 执行消息队列对象脱离 */
-	rt_mq_detach(&mq);
-	/* 执行定时器脱离 */
-	rt_timer_detach(&timer);
+    /* 执行消息队列对象脱离 */
+    rt_mq_detach(&mq);
+    /* 执行定时器脱离 */
+    rt_timer_detach(&timer);
 
-	/* 调度器解锁 */
-	rt_exit_critical();
+    /* 调度器解锁 */
+    rt_exit_critical();
 
-	/* 设置TestCase状态 */
-	tc_done(TC_STAT_PASSED);
+    /* 设置TestCase状态 */
+    tc_done(TC_STAT_PASSED);
 }
 
 int _tc_timer_timeout()
 {
-	/* 设置TestCase清理回调函数 */
-	tc_cleanup(_tc_cleanup);
-	timer_timeout_init();
+    /* 设置TestCase清理回调函数 */
+    tc_cleanup(_tc_cleanup);
+    timer_timeout_init();
 
-	/* 返回TestCase运行的最长时间 */
-	return 100;
+    /* 返回TestCase运行的最长时间 */
+    return 100;
 }
 /* 输出函数命令到finsh shell中 */
 FINSH_FUNCTION_EXPORT(_tc_timer_timeout, a thread timer testcase);
@@ -115,8 +115,8 @@ FINSH_FUNCTION_EXPORT(_tc_timer_timeout, a thread timer testcase);
 /* 用户应用入口 */
 int rt_application_init()
 {
-	timer_timeout_init();
+    timer_timeout_init();
 
-	return 0;
+    return 0;
 }
 #endif