
1 Introduction
RT-Thread is a multitasking application development platform integrating Real-Time Operating System (RTOS) kernel,
middleware component and developer community. It is developed with the strength of open source community. RT-Thread is also
an Internet of things operating system with rich components, highly scalable, simple development, ultra-low power consumption
and high security. RT-Thread has all the key components required for an IoT OS platform, such as GUI, network protocol stack,
secure transport, low-power components, and so on.

After 11 years of cumulative development, RT-Thread has owned the largest embedded open source community in China and
quickly got global interests. RT-Thread has been widely used in energy, vehicle-mounted, medical, consumer electronics and
other industries, deployed on more than 800 million devices.

2 Architecture of RT-Thread
One of the main differences between RT-Thread and many other RTOS, such as FreeRTOS and uC/OS, is that it is a real-time
kernel and has a rich set of software components, as shown in Figure 1.

AN13232
RT-Thread Board Port and Application Development
Rev. 0 — 04/2021 Application Note



Figure 1. RT-Thread architecture

• Kernel layer: RT-thread kernel is the core part of RT-Thread, including the implementation of objects in the kernel
system, such as multi-thread and its scheduling, semaphore, mailbox, message queue, memory management, timer,
etc. Libcpu /BSP (chip migration related file/board level support package) is closely related to hardware and consists of
peripheral drivers and CPU support.

• Component and Service layer: Components are top-level software based on RT-Thread kernel, such as VFS, FinSH
command line interface, network, device framework, and so on. Modular design is adopted to achieve high cohesion and
low coupling between components.

• Software package layer:

— IOT Software package: Paho MQTT, WebClient, mongoose, WebTerminal 

— Scripts Languange: JerryScript, MicroPython

— Multimedia: muPDF

— Tools: CmBacktrace, EasyFlash, EasyLogger, SystemView

— System related Software: RTGUI, Persimmon UI, lwext4, partition, SQLite

3 RT-Thread startup sequence
Figure 2 shows the RT-Thread startup sequence. The colored blocks require special attention, yellow for libCPU porting and green
for board porting.

NXP Semiconductors
RT-Thread startup sequence

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 2 / 20



Figure 2. RT-Thread startup sequence

The start entry of RT-Thread is rtthread_startup(). After chip startup file completes the hardware initialzation (such as clock
configuration, interrupt vector table, initializing heap and stack), jump to the start entry of RT-Thread. The startup sequence for
RT-Thread is as follows :

1. Disable global interrupt, initializing the system hardware.

2. Print system information and initialize system or modules such as system tick, scheduler.

3. Initialize the main thread.

4. Initialize software timer thread, idle thread.

5. Start scheduler, enable global interrupt, and switch context to main thread.

6. In the main thread, initialize the components, including drivers, network, vfs, and other component services in
programmed order and then enter the main function.

4 Directory structure
In the RT-Thread source code, Figure 3 shows the porting-related files located in the colored path, yellow for libCPU-related files
and green for board-related files.

NXP Semiconductors
Directory structure

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 3 / 20



Figure 3. Directory structure

• bsp

— hardware related files

• component

— rtthread components such as: finsh, libc, cplusplus, net …

• include

— rtthread header files

• libcpu

— cpu related files

• src

— rtthread kernel source codes

5 Start porting

5.1 Source code
Download source codes from rt-thread

5.2 Libcpu Porting
RT-Thread's libCPU abstraction layer provides a set of unified CPU architecture abstraction interface. This part of the interface
contains the global interrupt control function, Thread context switching function, the configurations of clock tick and interrupt
function, Cache, and so on.

• Context switch: context_xx.s

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 4 / 20

https://github.com/RT-Thread/rt-thread


A context switch represents a CPU switch from one thread to another, or between threads and interrupts, and so on. During a
context switch, the CPU typically stops processing the currently running code and saves the exact location where the current
program is running so that it can resume later. Table 1 describes key functions to be implemented.

Table 1. Functions to be implemented

rt_base_t rt_hw_interrupt_disable(void); Disable global interrupt

void rt_hw_interrupt_enable(rt_base_t level); Enable global interrupt

void rt_hw_context_switch_to(rt_uint32 to); Switch context, called while starting thread or used in signal

void rt_hw_context_switch(rt_uint32 from, rt_uint32
to);

Switch from thread to to thread

void rt_hw_context_switch_interrupt(rt_uint32 from,
rt_uint32 to);

Called in interrupt, switch from thread to to thread

• Thread initialization: cpuport.c

In RT-Thread, the Thread has an independent stack. When the Thread is switched, the context of the current Thread will be
stored in the stack. When the Thread wants to resume running, the context information will be read from the stack for recovery.

This file implements the initialization of the thread stack rt_hw_stack_init () and the hard Fault exception handler. Table
2 describes key functions to be implemented.

Table 2. Functions to be implemented

rt_hw_stack_init() Initializing stack of a thread

rt_hw_hard_fault_exception() Exception handler for hardfault

5.3 Libraries porting

5.3.1 Startup file
Startup.s provided by SDK of chip handles the following tasks:

• Initialize clock and the configuration of interrupt vector.

• Initialize global/static variables.

• Initialize the stack.

• Initialize library functions.

• Jump to next stage startup.

Under Keil MDK or IAR, without any modifications, the program will jump to rtthread_startup(). But under gcc compiler,
you need to change bl main to bl entry.

Startup.S
//Before change：
  bl  SystemInit
  bl  main
-------------------------------
  //after change：
    bl  SystemInit
    bl  entry            
-------------------------------
In main.c

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 5 / 20



int entry(void)
{
    rtthread_startup();
    return 0;
}                

5.4 Drivers porting

5.4.1 RTT device framework
RT-Thread provides a simple I/O device model framework, as shown in Figure 4, between the hardware and the application. It
falls into three layers, from top to bottom, I/O device interface layer, device driver framework layer (HAL), and BSP driver layer.

Figure 4. I/O device model framework

The device driver layer is a set of programs that drive hardware devices to work and provide the functions to access hardware
devices. It is responsible for creating and registering I/O devices. For devices with simple operation logic (init, read, write, close),
the device can be registered directly into the I/O device manager without going through the device driver framework (HAL) layer.
Figure 5 shows the sequence diagram.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 6 / 20



Figure 5. Sequence diagram

5.4.2 RTT device structure
RT-Thread's device model is based on the kernel object model. Devices are considered as a class of objects and are included
in the category of object manager. Each device object is derived from the base object, and each concrete device can inherit the
properties of its parent class object and derive its new properties. Figure 6 shows the inheritance and derivation relationship of
device object.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 7 / 20



Figure 6. Inheritance and derivation relationship of device object

The device object is specifically defined as follows:

struct rt_device
{
    struct rt_object          parent;        /* kernel base object */
    enum rt_device_class_type type;          /* device type */
    rt_uint16_t               flag;          /* device param */
    rt_uint16_t               open_flag;     /* device open flag */
    rt_uint8_t                ref_count;     /* device open count */
    rt_uint8_t                device_id;     /* device ID,0 - 255 */
            
    /* data transfer call back */
    rt_err_t (*rx_indicate)(rt_device_t dev, rt_size_t size);
    rt_err_t (*tx_complete)(rt_device_t dev, void *buffer);
         
    const struct rt_device_ops *ops;    /* device operator pointer*/
            
    /* device data */
    void *user_data;
};        

RT-Thread supports a variety of I/O device types. The main device types are as follows:

RT_Device_Class_Char             /* char device       */
RT_Device_Class_Block            /* block device         */
RT_Device_Class_NetIf            /* network device    */
RT_Device_Class_MTD              /* MTD device       */
RT_Device_Class_RTC              /* RTC device        */
RT_Device_Class_Sound            /* sound device        */

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 8 / 20



RT_Device_Class_Graphic          /* graphic device        */
RT_Device_Class_I2CBUS           /* I2C bus device     */
RT_Device_Class_USBDevice        /* USB device  */
RT_Device_Class_USBHost          /* USB host   */
RT_Device_Class_SPIBUS           /* SPI bus     */
RT_Device_Class_SPIDevice        /* SPI device        */
RT_Device_Class_SDIO             /* SDIO device       */
RT_Device_Class_Miscellaneous    /* miscellaneous device        */        

The application accesses the hardware device through the I/O device operator interface, which must be implemented by a
underlying device driver. Figure 7 shows the mapping between the I/O device interface and the operation method.

Figure 7. Mapping between I/O device interface and operation method

5.4.3 Example: A simple UART driver
Figure 8 shows an code example of a simple UART driver.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 9 / 20



Figure 8. Example code of a simple UART driver

In the rt_simple_uart_init() function, the s_uart device is initialized and registered.

Figure 9.

In s_uart_init() function, LPUART hardware is initialized. This function is called by rt_device_init when user code initializes
the board with the rt_components_board_init() function.

Figure 10 shows the data read from UART.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 10 / 20



Figure 10. Data read from UART

In the s_uart_read function, the s_uart device reads data from hardware and this function is called in rt_device_read.

UART write is similar too.

Figure 11. Data write from UART

In the s_uart_write function, the s_uart writes data to hardware and this function is called in rt_device_write.

5.5 Board porting
Board level hardware resource initialization is realized by the RT_HW_BOARD_INIT function, which completes the initialization of
system devices, such as:

• MPU configuration

• Pin function configuration

• System clock configuration

• kernel heap initialization

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 11 / 20



• Component board initialization

5.6 Project construction
Env is a development tool launched by RT-Thread and can be downloaded on RT-Thread Env. It provides compilation and
build environment, graphical system configuration and package management functions for projects based on RT-Thread
operating system. Its built-in menuconfig provides easy-to-use configuration tools and can configure the kernel, components and
software packages.

Key features of RT-Thread construction tool include:

• Menuconfig: A graphical configuration interface, good interactivity. On exit, it generates rtconfig.h automatically.

• A variety of highly reliable, modular software packages that are loosely coupled, good maintained. The software package
can be downloaded online by env tool.

• Scons: The default build tool, easy to use. Scons can both generate projects for IAR, MDK and invoke the GCC tool chain
to build.

SCONS is an open source build system written in Python similar to GNU Make. It takes a different approach: instead of processing
a Makefile, it uses SConstruct and SConscript files to guide the build process. These files are also Python scripts that can be
written using standard Python syntax. Therefore, you can call the Python standard library in SConstruct and SConscript files for
all kinds of complex processing, not limited to the rules set by the Makefile. For more documents about Scons, see Reference.

SCONS uses SConscript and SConstruct files to organize the source code structure. Typically, there is only one SConstruct file
for a project, but there can be multiple SConscript files. In general, there is a SConscript file in each subdirectory where the source
code is stored. SConscript files are the backbone of the organization's source code.

To make it easier for RT-Thread to support multiple compilers and to adjust compilation parameters, RT-Thread creates a
separate file named rtconfig.py for each BSP. Therefore, each RT-thread BSP directory contains the following three files:
rtconfig.py, SConstruct, and SConscript, which control the compilation of the BSP. There is only one SConstruct file in a
BSP but multiple SConscript files. As shown in Directory structure, the project SConstruct SConsript Kconfig files are located
in imxrt1062-nxp-evk.

RT-Thread has Sconscript files in most source folders. These script files are linked with the Sconscript of BSP directory to add the
source code for the macros defined in rtconfig.h to the compiler. We will take imxrt1062-nxp-evk BSP as an example to explain
how to build a project with SCONS in the below.

5.6.1 SConstruct
As mentioned above, BSP has only one SConstruct file which controls the compilation process. Figure 12 shows an example
of SConstruct.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 12 / 20

https://www.rt-thread.io/download.html?download=Env


Figure 12. Example of SConstruct

5.6.2 SConscript
Sconscript files connect all the source files, almost every source directory has one Sconscript file. There are two typical usages
for SConscript files.

• The SConcript file in the imxrt1062-nxp-evk BSP directory manages all other SConscript files under the BSP, as shown in
Figure 13.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 13 / 20



Figure 13. SConscript files

As shown in Figure 13, it involves all the SConstruct files of its subdirectories.

• The SConcript file in the Application directory manages the source code under the Application directory.

Figure 14. Sconscript file in Application directory

As shown in Figure 14, the script creates a group named Application, including main.c, app_simple_uart.c
and simple_uart_driver.c.

For complex and large systems, it is obvious that more than just a few files in a directory are required. It is likely to be
composed of several folders level by level.

In SCons, you can write SConscript scripts to compile files in these relatively separate directories and the Export and Import
functions in SCons to share data between SConstruct and SConscript files (that is an object data in Python). For more
information on how to use Scons, see SCons document.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 14 / 20

https://www.scons.org/doc/production/HTML/scons-user/index.html


5.6.3 Rtconfig.py
Rtconfig.py is a standard compiler configuration file for RT-Thread that controls most of the compilation options. It is a script file
written in Python that performs the following:

• Specify a compiler (choose the one you are using from the supported compilers).

• Specify compiler parameters, such as compile options, link options, and so on.

When compiling a project using the scons command, we compile the project according to the compiler configuration options of
rtconfig.py. The following code is part of the code for rtconfig.py in the imxrt1062-nxp-evk BSP directory.

Figure 15. Code for rtconfig.py

5.6.4 Kconfig
Kconfig is used to configure the kernel. The menuconfig command generates a configuration interface for users to configure
the kernel by reading various Kconfig files of the project. The output of menuconfig is the rtconfig.h: all configurations related
macro definitions will be automatically saved to the rtconfig.h file in the BSP directory. Each BSP has a rtconfig.h file, which is the
configuration information of the board.

After entering the imxrt1062-nxp-evk BSP directory with the Env tool, you can see the configuration menu of the main page with
the menuconfig command, as shown in Figure 16.

NXP Semiconductors
Start porting

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 15 / 20



Figure 16. Configuration menu

Save the configurations, exit the configuration interface and open the rtconfig.h file under the imxrt1062-nxp-evk directory. All the
configuration information is already available.

 
DO NOT modify it manually.

  NOTE  

Make sure to use the scons --target=mdk5 command to generate a new KEIL project every time when the menuconfig
configurations is complete.

6 How to implement application
In the RT-Thread source code, the application locates in the Application directory. For example, to create a demo code to use the
simple uart driver, name it as app_simple_uart.c and put it into the Application directory. Figure 17 shows the code.

NXP Semiconductors
How to implement application

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 16 / 20



Figure 17. Demo code

As shown in Figure 17, there are two methods to call application API in RT-Thread:

• Call API in the main thread

• Call API in the msh shell command

7 Build and run
After implementing the application codes, add the file into the project. As mentioned in Project construction, RT-Thread uses scons
to generate the project file, so we need to add file into SConscript in the Application folder.

NXP Semiconductors
Build and run

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 17 / 20



Figure 18. Add file in Application folder

Use env tool to generate keil project by the scons --target=mdk5 command.

In the project, app_simple_uart.c and simple_uart_driver.c are included in Applications group.

Figure 19. Applications group

After building the project, download the program by jLink and run. As shown in Figure 20, the program runs into the msh
command line. Type the app_simple_uart command to run the example. The log shows the result: the test string came out through
UART hardware.

NXP Semiconductors
Build and run

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 18 / 20



Figure 20. Log

8 Reference
• RT-Thread document

• SCons document

9 Revision history

Revision number Date Substantive changes

0 04/2021 Initial release

NXP Semiconductors
Reference

RT-Thread Board Port and Application Development, Rev. 0, 04/2021
Application Note 19 / 20

https://www.rt-thread.org/document/site/
https://www.scons.org/doc/production/HTML/scons-user/index.html


How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 04/2021
Document identifier: AN13232

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	1 Introduction
	2 Architecture of RT-Thread
	3 RT-Thread startup sequence
	4 Directory structure
	5 Start porting
	5.1 Source code
	5.2 Libcpu Porting
	5.3 Libraries porting
	5.3.1 Startup file

	5.4 Drivers porting
	5.4.1 RTT device framework
	5.4.2 RTT device structure
	5.4.3 Example: A simple UART driver

	5.5 Board porting
	5.6 Project construction
	5.6.1 SConstruct
	5.6.2 SConscript
	5.6.3 Rtconfig.py
	5.6.4 Kconfig


	6 How to implement application
	7 Build and run
	8 Reference
	9 Revision history

