i.MX 6 Series Platform SDK

Version 1.1

1 Introduction

The purposes of the Platform SDK for the i.MX 6 Series are to:
* Provide easily understood driver code that supports the primary features of a
peripheral.
* Demonstrate key use cases of the chips.
* Provide unit tests for drivers to demonstrate their main features.
* Provide a simple environment for quick board validation and bring-up.
* Provide a source of entirely non-GPL example driver code.
* Includes consistent, documented register access macros for all hardware IP blocks.
* Uses the IOMUX Tool to generate mux configuration code.
* Provides register definitions for ARM RealView Debugger and Lauterbach TRACE32.

The result is an SDK that provides reusable system code and a large number of drivers with
related unit tests. For board bring-up, each module can be individually tested one at a time
rather than having to bring up most drives all at once. Based on a common initialization of the
i.MX6 and the development board, a test for a specific peripheral is launched with the help of a
serial console for human interaction.

Also included in the release package are a Firmware Guide (iMX6_Firmware_Guide.pdf) and
IOMUX Tool application (IOMux.exe).

2 Versions

Version Release Date | Description
SDK Software 1.1.0 04-Feb-2013 | Release with complete driver set.
Firmware Guide Rev 0 09-Nov-2012 | Detailed driver documentation and use
guide for chip peripherals.
IOMUX Tool 3.4.04 01-Feb-2013 | IOMUX configuration tool Windows
application

3 Directory structure

Description Location
Parent of application source directories. - /apps
Common source code used by applications. -/apps/common

Also contains the main linker script.

Board library directories. Also contains IOMUX
Tool design files and generated code.

./board/<chip>/<board>/

Common board support source files. - /board/common

SDK documentation files. Doxygen output -/doc

appears in an html child directory.

The IwlP open source TCP/IP stack. - /1wip

Common makefiles. - /mk

Non-driver shared components. - /sdk/common

Source code related to the ARM Cortex-A9 -/sdk/core

MPCore platform.

Parent directory for all drivers, includes, and -/sdk/drivers/

their unit tests and docs.

Common headers which are chip and board -/sdk/include

independent.

Headers specific to the i.MX6 series. -/sdk/include/mx6dq
./sdk/include/mx6sdl
./sdk/include/mx6sl

Generated register headers.

./sdk/include/mx6dq/registers
./sdk/include/mx6sdl/registers
./sdk/include/mx6sl/registers

Miscellaneous utility components.

./sdk/utility

Build script and utilities. ./tools

ARM DS-5 debugger files. ./tools/ds5

ARM RealView Debugger BCD files ./tools/rvd/registers
Lauterbach TRACE32 peripheral files ./tools/lauterbach
Windows utilities. ./tools/windows

IOMux Tool

./tools/windows/iomux

Example for a driver:

Description

Location

TEMPMON driver source code.

./sdk/drivers/tempmon/src/

TEMPMON driver public includes.

./sdk/drivers/tempmon/tempmon.h

TEMPMON driver unit tests.

./sdk/drivers/tempmon/test/

4 System requirements

To build the Platform SDK, either a Linux host or Windows host with Cygwin installed may be
used.

4.1 Working with Cygwin
Cygwin can be installed and obtained from here:
http://www.cygwin.com/

The installation procedure is documented on this site. Some standard packages are necessary,
such as make, bash, and perl, but that list is not thorough.

The cygpath program is a utility that converts Windows native filenames to Cygwin POSIX-
style pathnames and vice versa. It can be used when a Cygwin program needs to pass a file
name to a native Windows program, or expects to get a file name from a native Windows
program.

When using the CodeBench toolchain (see below), it is necessary to set this environment
variable (sh syntax, csh will use a different syntax):

export CYGPATH=cygpath

Note: Version 3.81 of the make package in Cygwin might cause build failures due to a known
problem with that version related to correctly handling Windows pathnames. To avoid this
issue, it is recommended to verify that make version 3.82 or later is being used. 3.82 is the
default version for new installations and upgrades of Cygwin as of this writing.

Note: Parallel builds are currently disabled for Cygwin as a workaround for the build hanging
midway through building libsdk.

4.2 Installing the toolchain
The SDK is built using the Mentor Sourcery CodeBench Lite (previously called Sourcery G++ Lite)
version of the arm-none-eabi GCC toolchain. The latest version as of this writing is 4.7.2,
obtained here:

https://sourcery.mentor.com/GNUToolchain/release2322

Versions that are known to work with the SDK are as follows:

Package gcc version Date

Sourcery CodeBench Lite 2012.09-63 4.7.2 2012-11-13
Sourcery CodeBench Lite 2012.03-56 4.6.3 2012-06-11
Sourcery CodeBench Lite 2011.09-69 4.6.1 2011-12-19
Sourcery G++ Lite 2011.03-42 4.5.2 2011-05-02

The full list of CodeBench Lite releases is available on this page:
https://sourcery.mentor.com/GNUToolchain/subscription3053?lite=arm&lite=ARM

Download either the Windows or Linux installer package. The tarball packages do not include all
executables.

Install the package under /opt or any other local folder, and make sure that the PATH
environment variable allows accessing these executables used for the build process:

CC = arm-none-eabi-gcc
CXX = arm-none-eabi-g++

AS = arm-none-eabi-as
AR = arm-none-eabi-ar
LN = arm-none-eabi-1d

Example (sh syntax):
export PATH=$PATH:<toolchain install path>/bin

Otherwise, it is possible to redefine the above list in the
file . /<sdk_install path>/mk/common.mk with the complete path to the executable.

4.3 Source code installation

The SDK source code package can be installed anywhere.

It is not recommended to use a Windows unzip program to extract the sources, as this may
result in line endings being automatically converted. Instead, the equivalent command of
Cygwin or Linux should be used.

Example:
tar zxvf imx6_platform sdk_v1.1.0.tgz

4.4 Build command
To build the SDK, use the . /tools/build_sdk command.

Note: It is important to run build_sdk from the SDK root directory, not from within the
tools directory.

The detailed usage that is printed for the ~help option is as follows:

Usage:
build sdk [-t <target>] [-b <board>] [-v <rev>] [-r <test>] [-n] [-c] [-1]

Builds one or more configurations of the i.MX6 Platform SDK.

Options
-t, -target=<target> Specify the target name. Optional, and the default is all.
-b, -board=<brd> Specify the board name. Optional, and the default is all.

-v, -board_rev=<rev>, -rev=<rev>
Specify the board revision. Optional, and the default is all.

-a, -app=<name> Optional argument to select a single app to build. If not present,
then all apps will be built.

-r, -test=<name> Optional argument to select a single test for sdk unit_test app,
or 'all' for all tests. Defaults to ALL.

-c, -clean Optional flag to force a clean build.

-n, -no-build Don't actually run make.

-1, -list-builds Optional flag to list target, board, board rev combinations to be

built.
-j, -jobs=<n> Set the number of parallel processes to use for each build. Default

is the SDK_JOBS env variable, or 2 if not set.

Short options take the same arguments as their respective long options.
The '=' is optional for long options; arguments can be specified as -arg=value or
—-arg value. Short options require a space between the option and value.

If -clean was specified, 'make clean' will be run first. Then a regular build will be executed,
unless the -no-build argument is present. If -target, -board, or -board_rev are set to 'all',
or not specified, then multiple builds will be run for all valid combinations of the
unspecified configuration parameters.

Valid target and board combinations:

target=mx6dq boards:

evb rev a (labeled MX6QCPUDDR3)
sabre_ai rev a, b, c
smart_device rev a, b, c

target=mx6sdl boards:

evb rev a (labeled MX6QCPUDDR3)
sabre_ai rev a, b, c
smart_device rev a, b, c

target=mx6sl boards:
evk rev a

Examples:
build sdk -target mx6dq -board evb
Build for the mx6dgq evb board with default board rev of a and all tests.
build sdk -t mx6dq -b sabre_ai -v a -test sdma -clean

Build the mx6dg sabre ai board with explicit board rev a, but only build the sdma test.
Clean before building.

build sdk -clean -target=all -test vpu

Clean build of vpu test for all valid combinations of target, board, and board_rev.

The set of boards and revisions supported by this SDK release are listed here:

Name Targets Description Revisions

evb mx6dq Freescale validation board, | A
mx6sdl labeled MX6QCPUDDR3

sabre_ai mx6dq Automotive reference A B,C
mx6sdl| design

smart_device mx6dq Smart Device reference A B, C
mx6sdl| design

evk mx6s| Evaluation board A

Once the build is finished a completion message will be printed showing where the ELF output
file is located. The build produces an ELF file, a binary image, and a map file. Output files can be

found in:
./output/<target>/<app>/<board> rev_<rev>/

Example output files in the output/mx6dq/sdk_unit test/sabre_ ai/ directory:

sdk_unit_test_vpu.elf
sdk_unit_test_vpu.bin
sdk_unit_test_vpu.map

Adding the option —clean to the build_ sdk command line will remove the . /output

directory prior to building. Example:
./tools/build_sdk -t mx6dg -b sabre ai -v a -test sdma -clean

For more information about the SDK’s build system, please see the Platform SDK Build System
Architecture.pdf file in the doc/ directory.

5 How to run a test

5.1 Test procedures
Procedures for running individual driver tests are documented in the SDK Unit Test
Procedures.pdf file in the doc/ directory.

5.2 Setup required
An i.MX 6Series board is necessary to run a test. Please refer to the appropriate board user
guide to prepare this setup.

The user interaction and output information are available through the serial port connected to
a host running terminal software such TeraTerm, minicom, HyperTerminal, or a similar
program.

The configuration for the terminal is common: 115200 bps 8N1 (8 data bits, no parity, 1 stop
bit).

5.3 Download with a JTAG probe

The code can be downloaded and executed through any JTAG tool that supports the Cortex-A9.
It is necessary to have a board initialization file that will initialize some of the clocks, the MMDC
controller and its interface, as well as the DDR3.

The SDK package contains debugger initialization scripts for the ARM RealView Debugger under
the . /tools/rvd directory.

Run the appropriate script for the board you are using in the debugger after opening a
connection to the i.MX6 Series device. After the script finishes, DDR3 memory is available for
use. At this point you can load the ELF output file from the build and run the test.

5.4 Download with the manufacturing tool

The manufacturing tool can be obtained from the Freescale i.MX Design tool web page:
http://www.freescale.com/webapp/sps/site/overview.jsp?code=IMX_DESIGN

Below is an example of profile that can be added in the ucl.xml:

<LIST name="DWLD_IN_SDP" desc="Download and execute a binary!">

<CMD type="find" body="Recovery" timeout="180"/>

<CMD type="boot" body="Recovery" file="sdk unit test vpu.bin">Loading
SDK image</CMD>

<CMD type="jump">Jumping to SDK image.</CMD>
</LIST>

5.5 Using SD boot

The SDK binary image can be programmed on a SD card using 2 different methods, depending
on the host OS being used.

Using a Windows host:
By using the cfimager-imx.exe provided with the release package under
folder . /tools/windows.

Use this command:

cfimager-imx.exe —o 0x0 —f ./output/mx6dg/sdk_unit_test/evb
rev_a/sdk_unit test ALL.bin —d <your drive letter for the SD
card>

For example, if the drive letter of the SD card reader is F :, type the following:

cfimager-imx.exe —o 0x0 —f ./output/mx6dg/sdk_unit_test/evb
rev_a/sdk_unit_test ALL.bin —d £

There is also the option of formatting the card first before programming it, though be warned it
will take more time for this operation to complete due to the card formatting. To invoke the
card formatting, simply append the above command with “~a”, as provided in the following
example (again, assuming the drive letter is “£”):

cfimager-imx.exe —o 0x0 —f ./output/mx6dg/sdk_unit_test/evb
rev_a/sdk_unit_test ALL.bin —d f -a

Using a Linux host:
Use the command dd under Linux to format the SD card:

dd if=output/mx6dg/sdk_unit_test/evb rev_a/sdk_unit_test ALL.bin
of=/dev/sdx seek=2 skip=2 bs=512 && sync

/dev/sdx is the Linux device for your SD card.

The seek option allows to not change the first 1kB of the SD card where a partition table could
reside. The skip option is to remove the unnecessary first 1kB from the binary as the seek
option is used.

Once the SD card is programmed successfully with a bootable SDK image, follow below
instructions on how to run it on the i.MX6DQ EVB board:
* Insert SD card with SDK binary into SD slot (SD4 by default).
* Configure boot dip switches for boot from SD:
o SW1: off-off-off-off-off-off-ON-off
o SW2: off-off-off-ON-ON-off-off-off
o SWS5: all off
o SWa8: all off.
* Power on board, and follow on screen prompt commands on host’ terminal window.

6 How to add a new driver and test

A new driver should typically be added in a new directory under the . /sdk/drivers/
directory. Public headers go directly into the driver directory root, the source code and private
headers into . /sdk/drivers/<new_driver>/src, and its unit test

into . /sdk/new_driver/test.

Next, add the new driver to the makefile at . /sdk/drivers/Makefile.

The main test file should contain a test function named:

int32_t new_driver_test(void).
Hence, when building, the parameter “~test new_driver” can simply be used with
build sdk.

To add the test function to the build, create a new makefile under the driver’s test directory.
You can copy another driver’s test makefile as a starting point. Then add the test makefile to
the sdk_unit_test application’s makefile at . /apps/sdk_unit test/Makefile.

When using the test ALL option, which is the default if the -test option is not passed to
build_sdk, this test can also be added into the menu available
in ./apps/sdk_unit_ test/src/all_test.c.

7 Firmware Guide

The i.MX 6 Series Firmware Guide contains detailed documentation of the peripherals
supported by the SDK and the associated drivers. The document iMX6_Firmware_Guide.pdf is
located in the doc folder of release package.

8 Register definitions

Included with the SDK is a full set of register definition C language header files for all modules
on the i.MX 6 Series chips. These headers are located under
sdk/include/<chip>/registers. The macros defined in the header files are generated
from the same source material as the register definition sections in the reference manuals and
use the same names listed in those sections. In addition, the full documentation of each
register and bitfield found in the reference manual is available in the header files as comments.

Further information about the header files can be found in the Register header quick
reference.pdf file located in the doc directory.

To aid in debugging, the SDK includes complete register definitions for both the ARM RealView
Debugger and Lauterbach TRACE32. These files are found under tools/rvd/registers and
tools/lauterbach. A PDF describing how to install and use the RealView register definitions
is in the doc directory.

9 IOMUX Tool

IOMUX Tool helps document and validate the IOMUX configuration for a board. The tool is
intended to be used by board designers to generate a design file describing pin mux and pad
settings for a board. It can then automatically generate source code (.h and .c files) with
functions to setup IOMUXC register configuration. This frees device driver developers from
board design details of each pin and pad. The source code generated by the tool is used as-is by
the SDK.

The IOMUX Tool executable is available with the release package in the
tools/windows/iomux folder. Also included in that directory is the IOMUX Tool manual PDF.

IOMUX design files for all boards supported by the SDK are located under the chip- and board-
specific source directories at board/<chip>/<board>/. For instance, the i.MX6DQ SABRE-AI
design file is at board/mx6dq/sabre_ai/i.MX6DQ_Sabre AI_ RevB.IomuxDesign.xml.

10 Doxygen

The SDK comes with a Doxygen configuration file and all source code in the SDK is commented
with Doxygen-style documentation comments. This means that Doxygen can be used to
generate comprehensive documentation for all source files and functions in the SDK.

Install Doxygen by downloading it from:

http://doxygen.org/
Doxygen also depends on the Graphviz project to produce graphs.

http://www.graphviz.org/

If the Graphviz tool dot is not installed in a directory in your environment PATH, you will need
to edit the Doxyfile configuration file and modify the DOT PATH setting as appropriate.
Doxygen will still run and produce documentation without dot being available, but the output
documentation will contain broken image links to graphs.

To generate the SDK source code documentation, simply execute the doxygen command with
no arguments from the SDK installation root directory. Alternatively, you can use the Doxygen

GUI application. HTML documentation output will be placed into the doc/html directory. To
view the documentation, open doc/html/index.html in a browser:

11 Running the video decoder demo

This section described in detail how to setup and run the video display demo on i.MX6 Series
EVB / Sabre Lite / Smart Device boards.

Style key for the steps below:
Text for console output.
Text for user input.

Text for important hints.

1. How to build the program?
./tools/build_sdk —t mx6dq —b evb —r vpu —c

2. How to setup the demo?
a) Create the image over SD card. Under Linux, using fdisk/mkfs.vfat/dd to create a
bootable image together with the FAT32 file system on the same SD card.
» sudo fdisk /dev/sdx, sdx isthe device name of your SD card.

sudo fdisk /dev/sdb
Command (m for help): m

Delete existing partition if there is.
Command (m for help): d
Selected partition 1

Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1023, default 1): 256
Here the start address should be larger than 32M (space reserved to program

the test binary). If one cylinder is 4k, then here 1G is reserved.
Last cylinder or +size or +sizeM or +sizeK (256-1023,
default 1023): 1023

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

Now there’s one partition on the SD card.
cat /proc/partitions
major minor #blocks name

8 0 78125000 sda
8 1 104391 sdal
8 2 78019672 sda2
253 0 75956224 dm-0
253 1 2031616 dm-1
8 16 3872256 sdb
8 17 2904576 sdbl

» Using mkfs.vfat to format the partition:
sudo mkfs.vfat /dev/sdbl
» Copy two video clips to the SD card. Note that the filename should have a
“.264” extension. The video should be raw H.264 encoded files with no
container. The program will find the first valid .264 file for playing.

» Burn the image to the SD card.
sudo dd
if=output/mx6dq/sdk_unit_test/evb_rev_a/sdk_unit_test_vpu.b
in of=/dev/sdb seek=2 skip=2 bs=512 && sync

Note that seek=2 skip=2 is mandatory, without them the MBR of the file
system will be overwritten.
b) Put the SD card into the SD socket.
c) Set the boot switch to boot from SD4.
d) Plugthe HDMI cable of the first display to J5 of the CPU board.
e) Connect the serial cable for console output and 5V power supply, power on the
board.

kkhkkhkhkkhhkhkhhkhkhhkhhhkhhkkhhkhkhhkhkhhkhhhkhhhkhkhkhkhhkkhhkhhhkhkhkkhhkkrhkk kkk kkk,kk**x*%

Diagnostics Suite (1.0) for i.MX6DQ TOl.0 Sabre-Lite Board Rev A
Build: Mar 8 2012, 16:22:20

Freescale Semiconductor, Inc.
khkhkkhkhkhkhhdhhkhkhhkdhkhhdhhkdhkhhdhkhhhhkdhkhhdhhdhkhhdhkhkdhhhdhkhdhdhhkdhkhhdhkhdhdhkdhkidd,,kdhkikd,i**x*%x

======== Clock frequencies(HZ) =========
Cortex A9 core : 792,000,000

DDR memory : 528,000,000

UART2 for debug : 80,000,000

EPIT1 for system timer : 66,000,000

data bits: 64, num banks: 8

row: 14, col: 10

DDR type is DDR3

Chip select CSDO is used
Density per chip select: 1024MB

[INFO] Product Info: i.MX6Q

[INFO] VPU firmware version: 2.1.2
0 - VPU DECODER TEST
1 - VPU ENCODER TEST
X - to exit.

From this prompt, the user is invited to choose what to do.

3. Limitations
a) There is no resizing on the video output. For example if you are decoding some
video clips with resolution other than 1080p, the video will show on the top-left
of the screen with its original size.
b) Video clips must be raw without container.
c) Currently only H.264 video decoding is supported. Other formats such as VC1,
H.263, MPEG3, MPEG4 may be added in a future release.

12 Known limitations

These are the current set of known bugs and issues in the Platform SDK.

* The TEMPMON driver over-temperature alarm feature does not work.
* The CCM driver (ccm_pll.c) does not support getting clocks for all peripherals from its
get _peri clock() APl

13 Release notes

Release notes for this version of the SDK and a detailed change list are available in the SDK
Release Notes.txt file in the doc/ directory.

