/**
* \file
*
* \brief SAM RTC Driver (Calendar Mode)
*
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit Atmel Support
*/
#ifndef RTC_CALENDAR_H_INCLUDED
#define RTC_CALENDAR_H_INCLUDED
/**
* \defgroup asfdoc_sam0_rtc_calendar_group SAM RTC Calendar (RTC CAL) Driver
*
* This driver for Atmel® | SMART ARM®-based microcontrollers provides
* an interface for the configuration and management of the device's Real Time
* Clock functionality in Calendar operating mode, for the configuration and
* retrieval of the current time and date as maintained by the RTC module.
The following driver API modes are covered by this manual:
*
* - Polled APIs
* \if RTC_CALENDAR_CALLBACK_MODE
* - Callback APIs
* \endif
*
* The following peripheral is used by this module:
* - RTC (Real Time Clock)
*
* The following devices can use this module:
* - Atmel | SMART SAM D20/D21
* - Atmel | SMART SAM R21
* - Atmel | SMART SAM D09/D10/D11
* - Atmel | SMART SAM L21/L22
* - Atmel | SMART SAM DA1
* - Atmel | SMART SAM C20/C21
* - Atmel | SMART SAM HA1
* - Atmel | SMART SAM R30
*
* The outline of this documentation is as follows:
* - \ref asfdoc_sam0_rtc_calendar_prerequisites
* - \ref asfdoc_sam0_rtc_calendar_module_overview
* - \ref asfdoc_sam0_rtc_calendar_special_considerations
* - \ref asfdoc_sam0_rtc_calendar_extra_info
* - \ref asfdoc_sam0_rtc_calendar_examples
* - \ref asfdoc_sam0_rtc_calendar_api_overview
*
*
* \section asfdoc_sam0_rtc_calendar_prerequisites Prerequisites
*
* There are no prerequisites for this module.
*
*
* \section asfdoc_sam0_rtc_calendar_module_overview Module Overview
*
* The RTC module in the SAM devices is a 32-bit counter, with a 10-bit
* programmable prescaler. Typically, the RTC clock is run continuously,
* including in the device's low-power sleep modes, to track the current time
* and date information. The RTC can be used as a source to wake up the system
* at a scheduled time or periodically using the alarm functions.
*
* In this driver, the RTC is operated in Calendar mode. This allows for an
* easy integration of a real time clock and calendar into a user application
* to track the passing of time and/or perform scheduled tasks.
*
* Whilst operating in Calendar mode, the RTC features:
* - Time tracking in seconds, minutes, and hours
* - 12 or 24 hour mode
* - Date tracking in day, month, and year
* - Automatic leap year correction
*
* \subsection asfdoc_sam0_rtc_calendar_features Driver Feature Macro Definition
*
*
* Driver Feature Macro |
* Supported devices |
*
*
* FEATURE_RTC_PERIODIC_INT |
* SAM L21/L22/C20/C21/R30 |
*
*
* FEATURE_RTC_PRESCALER_OFF |
* SAM L21/L22/C20/C21/R30 |
*
*
* FEATURE_RTC_CLOCK_SELECTION |
* SAM L21/L22/C20/C21/R30 |
*
*
* FEATURE_RTC_GENERAL_PURPOSE_REG |
* SAM L21/L22/R30 |
*
*
* FEATURE_RTC_CONTINUOUSLY_UPDATED |
* SAM D20, SAM D21, SAM R21, SAM D10, SAM D11, SAM DA1, SAM HA1 |
*
*
* FEATURE_RTC_TAMPER_DETECTION |
* SAM L22 |
*
*
* \note The specific features are only available in the driver when the
* selected device supports those features.
*
* \subsection asfdoc_sam0_rtc_calendar_module_overview_alarms Alarms and Overflow
* The RTC has up to four independent hardware alarms that can be configured by the user
* application. These alarms will be triggered on match with the current
* clock value, and can be set up to trigger an interrupt, event, or both. The
* RTC can also be configured to clear the clock value on alarm match, resetting
* the clock to the original start time.
*
* If the RTC is operated in clock-only mode (i.e. with calendar disabled), the
* RTC counter value will instead be cleared on overflow once the maximum count
* value has been reached:
*
* \f[ COUNT_{MAX} = 2^{32}-1 \f]
*
* When the RTC is operated with the calendar enabled and run using a nominal
* 1Hz input clock frequency, a register overflow will occur after 64 years.
*
* \subsection asfdoc_sam0_rtc_calendar_module_overview_periodic Periodic Events
* The RTC can generate events at periodic intervals, allowing for direct
* peripheral actions without CPU intervention. The periodic events can be
* generated on the upper eight bits of the RTC prescaler, and will be generated on
* the rising edge transition of the specified bit. The resulting periodic
* frequency can be calculated by the following formula:
*
* \f[ f_{PERIODIC}=\frac{f_{ASY}}{2^{n+3}} \f]
*
* Where \f$f_{ASY}\f$ refers to the \e asynchronous clock set up in the RTC
* module configuration. For the RTC to operate correctly in calendar mode, this
* frequency must be 1KHz, while the RTC's internal prescaler should be set to
* divide by 1024. The \b n parameter is the event source generator index of the
* RTC module. If the asynchronous clock is operated at the recommended 1KHz,
* the formula results in the values shown in
* \ref asfdoc_sam0_rtc_calendar_module_rtc_hz "the table below".
*
* \anchor asfdoc_sam0_rtc_calendar_module_rtc_hz
*
* RTC Event Frequencies for Each Prescaler Bit Using a 1KHz Clock
*
* n | Periodic event |
*
*
* 7 | 1Hz |
*
*
* 6 | 2Hz |
*
*
* 5 | 4Hz |
*
*
* 4 | 8Hz |
*
*
* 3 | 16Hz |
*
*
* 2 | 32Hz |
*
*
* 1 | 64Hz |
*
*
* 0 | 128Hz |
*
*
*
* \note The connection of events between modules requires the use of the
* \ref asfdoc_sam0_events_group "SAM Event System Driver (EVENTS)"
* to route output event of one module to the input event of another.
* For more information on event routing, refer to the event driver
* documentation.
*
* \subsection asfdoc_sam0_rtc_calendar_module_overview_correction Digital Frequency Correction
* The RTC module contains Digital Frequency Correction logic to compensate for
* inaccurate source clock frequencies which would otherwise result in skewed
* time measurements. The correction scheme requires that at least two bits
* in the RTC module prescaler are reserved by the correction logic. As a
* result of this implementation, frequency correction is only available when
* the RTC is running from a 1Hz reference clock.
*
* The correction procedure is implemented by subtracting or adding a single
* cycle from the RTC prescaler every 1024 RTC Generic Clock (GCLK) cycles. The adjustment is
* applied the specified number of time (maximum 127) over 976 of these periods. The
* corresponding correction in parts per million (PPM) will be given by:
*
* \f[ Correction(PPM) = \frac{VALUE}{999424}10^6 \f]
*
* The RTC clock will tick faster if provided with a positive correction value,
* and slower when given a negative correction value.
*
*
* \subsection asfdoc_sam0_rtc_calendar_module_overview_tamper_detect RTC Tamper Detect
* See \ref asfdoc_sam0_rtc_tamper_detect.
*
* \section asfdoc_sam0_rtc_calendar_special_considerations Special Considerations
*
* \subsection asfdoc_sam0_rtc_calendar_special_considerations_year Year Limit
* The RTC module has a year range of 63 years from the starting year configured
* when the module is initialized. Dates outside the start to end year range
* described below will need software adjustment:
*
* \f[ [YEAR_{START}, YEAR_{START}+64] \f]
*
* \subsection asfdoc_sam0_rtc_calendar_special_considerations_clock Clock Setup
* \subsubsection asfdoc_sam0_rtc_calendar_clock_samd_r SAM D20/D21/R21/D10/D11/DA1/HA1 Clock Setup.
* The RTC is typically clocked by a specialized GCLK generator that has a
* smaller prescaler than the others. By default the RTC clock is on, selected
* to use the internal 32KHz Resistor/Capacitor (RC)-oscillator with a prescaler
* of 32, giving a resulting clock frequency of 1024Hz to the RTC. When the
* internal RTC prescaler is set to 1024, this yields an end-frequency of 1Hz
* for correct time keeping operations.
*
* The implementer also has the option to set other end-frequencies.
* \ref asfdoc_sam0_rtc_calendar_rtc_out_freq "The table below" lists the
* available RTC frequencies for each possible GCLK and RTC input prescaler
* options.
*
* \anchor asfdoc_sam0_rtc_calendar_rtc_out_freq
*
* RTC Output Frequencies from Allowable Input Clocks
*
* End-frequency |
* GCLK prescaler |
* RTC prescaler |
*
*
* 32KHz |
* 1 |
* 1 |
*
*
* 1KHz |
* 32 |
* 1 |
*
*
* 1Hz |
* 32 |
* 1024 |
*
*
*
* The overall RTC module clocking scheme is shown in
* \ref asfdoc_sam0_rtc_calendar_rtc_clock_fig "the figure below".
*
* \anchor asfdoc_sam0_rtc_calendar_rtc_clock_fig
* \dot
* digraph clocking_scheme {
* rankdir=LR;
* GCLK [shape="record", label=" GCLK | RTC_GCLK",
* bgcolor="lightgray", style="filled"];
* RTCPRE [shape="record" label=" RTC | RTC PRESCALER"];
* RTC [shape="record", label=" RTC | RTC CLOCK"];
*
* GCLK:f1 -> RTCPRE:f1;
* RTCPRE:f1 -> RTC:f1;
* }
* \enddot
*
* \note For the calendar to operate correctly, an asynchronous clock of 1Hz
* should be used.
*
* \subsubsection asfdoc_sam0_rtc_calendar_clock_saml SAM L21/C20/C21/R30 Clock Setup
* The RTC clock can be selected from OSC32K, XOSC32K, or OSCULP32K. A 32KHz
* or 1KHz oscillator clock frequency is required. This clock must be
* configured and enabled in the 32KHz oscillator controller before using the RTC.
*
* \ref asfdoc_sam0_rtc_calendar_rtc_clk lists the available RTC clock.
*
* \anchor asfdoc_sam0_rtc_calendar_rtc_clk
*
* RTC Clocks Source
*
* RTC clock frequency |
* Clock source |
* Description |
*
*
* 1.024kHz |
* ULP1K |
* 1.024kHz from 32KHz internal ULP oscillator |
*
*
* 32.768kHz |
* ULP32K |
* 32.768kHz from 32KHz internal ULP oscillator |
*
*
* 1.024kHz |
* OSC1K |
* 1.024kHz from 32KHz internal oscillator |
*
*
* 32.768kHz |
* OSC32K |
* 32.768kHz from 3KkHz internal oscillator |
*
*
* 1.024kHz |
* XOSC1K |
* 1.024kHz from 32KHz internal oscillator |
*
*
* 32.768kHz |
* XOSC32K |
* 32.768kHz from 32KHz external crystal oscillator |
*
*
*
* \note For the calendar to operate correctly, an asynchronous clock of 1Hz
* should be used.
*
* \section asfdoc_sam0_rtc_calendar_extra_info Extra Information
*
* For extra information, see \ref asfdoc_sam0_rtc_calendar_extra. This includes:
* - \ref asfdoc_sam0_rtc_calendar_extra_acronyms
* - \ref asfdoc_sam0_rtc_calendar_extra_dependencies
* - \ref asfdoc_sam0_rtc_calendar_extra_errata
* - \ref asfdoc_sam0_rtc_calendar_extra_history
*
*
* \section asfdoc_sam0_rtc_calendar_examples Examples
*
* For a list of examples related to this driver, see
* \ref asfdoc_sam0_rtc_calendar_exqsg.
*
*
* \section asfdoc_sam0_rtc_calendar_api_overview API Overview
* @{
*/
#include
#if RTC_CALENDAR_ASYNC == true
# include
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* Define port features set according to different device family
* @{
*/
#if (SAML21) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30) || defined(__DOXYGEN__)
/** RTC periodic interval interrupt. */
# define FEATURE_RTC_PERIODIC_INT
/** RTC prescaler is off. */
# define FEATURE_RTC_PRESCALER_OFF
/** RTC clock selection. */
# define FEATURE_RTC_CLOCK_SELECTION
# if !(SAMC20) && !(SAMC21)
/** General purpose registers. */
# define FEATURE_RTC_GENERAL_PURPOSE_REG
# endif
#else
/** RTC continuously updated. */
# define FEATURE_RTC_CONTINUOUSLY_UPDATED
#endif
#if (SAML22) || defined(__DOXYGEN__)
/** RTC tamper detection. */
# define FEATURE_RTC_TAMPER_DETECTION
#endif
/*@}*/
#ifdef FEATURE_RTC_CLOCK_SELECTION
/**
* \brief Available clock source for RTC.
* RTC clock source.
*/
enum rtc_clock_sel {
/** 1.024kHz from 32KHz internal ULP oscillator */
RTC_CLOCK_SELECTION_ULP1K = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K_Val,
/** 32.768kHz from 32KHz internal ULP oscillator */
RTC_CLOCK_SELECTION_ULP32K = OSC32KCTRL_RTCCTRL_RTCSEL_ULP32K_Val,
#if !(SAML22)
/** 1.024kHz from 32KHz internal oscillator */
RTC_CLOCK_SELECTION_OSC1K = OSC32KCTRL_RTCCTRL_RTCSEL_OSC1K_Val,
/** 32.768kHz from 32KHz internal oscillator */
RTC_CLOCK_SELECTION_OSC32K = OSC32KCTRL_RTCCTRL_RTCSEL_OSC32K_Val,
#endif
/** 1.024kHz from 32KHz internal oscillator */
RTC_CLOCK_SELECTION_XOSC1K = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K_Val,
/** 32.768kHz from 32.768kHz external crystal oscillator */
RTC_CLOCK_SELECTION_XOSC32K = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC32K_Val,
};
#endif
#if !defined (RTC_NUM_OF_ALARMS) && defined(RTC_ALARM_NUM)
#define RTC_NUM_OF_ALARMS RTC_ALARM_NUM
#endif
/**
* \brief Available alarm channels.
*
* Available alarm channels.
*
* \note Not all alarm channels are available on all devices.
*/
enum rtc_calendar_alarm {
/** Alarm channel 0 */
RTC_CALENDAR_ALARM_0 = 0,
#if (RTC_NUM_OF_ALARMS > 1) || defined(__DOXYGEN__)
/** Alarm channel 1 */
RTC_CALENDAR_ALARM_1 = 1,
#endif
#if (RTC_NUM_OF_ALARMS > 2) || defined(__DOXYGEN__)
/** Alarm channel 2 */
RTC_CALENDAR_ALARM_2 = 2,
#endif
#if (RTC_NUM_OF_ALARMS > 3) || defined(__DOXYGEN__)
/** Alarm channel 3 */
RTC_CALENDAR_ALARM_3 = 3,
#endif
};
#ifdef FEATURE_RTC_PERIODIC_INT
/**
* \brief Available periodic interval source.
*/
enum rtc_calendar_periodic_interval{
/** Periodic interval 0 */
RTC_CALENDAR_PERIODIC_INTERVAL_0 = 0,
/** Periodic interval 1 */
RTC_CALENDAR_PERIODIC_INTERVAL_1 = 1,
/** Periodic interval 2 */
RTC_CALENDAR_PERIODIC_INTERVAL_2 = 2,
/** Periodic interval 3 */
RTC_CALENDAR_PERIODIC_INTERVAL_3 = 3,
/** Periodic interval 4 */
RTC_CALENDAR_PERIODIC_INTERVAL_4 = 4,
/** Periodic interval 5 */
RTC_CALENDAR_PERIODIC_INTERVAL_5 = 5,
/** Periodic interval 6 */
RTC_CALENDAR_PERIODIC_INTERVAL_6 = 6,
/** Periodic interval 7 */
RTC_CALENDAR_PERIODIC_INTERVAL_7 = 7,
};
#endif
#if RTC_CALENDAR_ASYNC == true
#ifdef FEATURE_RTC_PERIODIC_INT
/**
* \brief Callback types.
*
* The available callback types for the RTC calendar module.
*/
enum rtc_calendar_callback {
/** Callback for Periodic Interval 0 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_0 = 0,
/** Callback for Periodic Interval 1 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_1,
/** Callback for Periodic Interval 2 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_2,
/** Callback for Periodic Interval 3 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_3,
/** Callback for Periodic Interval 4 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_4,
/** Callback for Periodic Interval 5 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_5,
/** Callback for Periodic Interval 6 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_6,
/** Callback for Periodic Interval 7 Interrupt */
RTC_CALENDAR_CALLBACK_PERIODIC_INTERVAL_7,
/** Callback for alarm 0 */
RTC_CALENDAR_CALLBACK_ALARM_0,
# if (RTC_NUM_OF_ALARMS > 1) || defined(__DOXYGEN__)
/** Callback for alarm 1 */
RTC_CALENDAR_CALLBACK_ALARM_1,
# endif
# if (RTC_NUM_OF_ALARMS > 2) || defined(__DOXYGEN__)
/** Callback for alarm 2 */
RTC_CALENDAR_CALLBACK_ALARM_2,
# endif
# if (RTC_NUM_OF_ALARMS > 3) || defined(__DOXYGEN__)
/** Callback for alarm 3 */
RTC_CALENDAR_CALLBACK_ALARM_3,
# endif
#ifdef FEATURE_RTC_TAMPER_DETECTION
/** Callback for tamper */
RTC_CALENDAR_CALLBACK_TAMPER,
#endif
/** Callback for overflow */
RTC_CALENDAR_CALLBACK_OVERFLOW,
# if !defined(__DOXYGEN__)
/** Total number of callbacks */
_RTC_CALENDAR_CALLBACK_N
# endif
};
#else
/**
* \brief Callback types.
*
* The available callback types for the RTC calendar module.
*/
enum rtc_calendar_callback {
/** Callback for alarm 0 */
RTC_CALENDAR_CALLBACK_ALARM_0 = 0,
# if (RTC_NUM_OF_ALARMS > 1) || defined(__DOXYGEN__)
/** Callback for alarm 1 */
RTC_CALENDAR_CALLBACK_ALARM_1,
# endif
# if (RTC_NUM_OF_ALARMS > 2) || defined(__DOXYGEN__)
/** Callback for alarm 2 */
RTC_CALENDAR_CALLBACK_ALARM_2,
# endif
# if (RTC_NUM_OF_ALARMS > 3) || defined(__DOXYGEN__)
/** Callback for alarm 3 */
RTC_CALENDAR_CALLBACK_ALARM_3,
# endif
#ifdef FEATURE_RTC_TAMPER_DETECTION
/** Callback for tamper */
RTC_CALENDAR_CALLBACK_TAMPER,
#endif
/** Callback for overflow */
RTC_CALENDAR_CALLBACK_OVERFLOW,
# if !defined(__DOXYGEN__)
/** Total number of callbacks */
_RTC_CALENDAR_CALLBACK_N
# endif
};
#endif
# if !defined(__DOXYGEN__)
typedef void (*rtc_calendar_callback_t)(void);
# endif
#endif
#ifdef FEATURE_RTC_PRESCALER_OFF
/**
* \brief RTC input clock prescaler settings.
*
* The available input clock prescaler values for the RTC calendar module.
*/
enum rtc_calendar_prescaler {
/** RTC prescaler is off, and the input clock frequency is
prescaled by a factor of 1 */
RTC_CALENDAR_PRESCALER_OFF = RTC_MODE2_CTRLA_PRESCALER_OFF,
/** RTC input clock frequency is prescaled by a factor of 1 */
RTC_CALENDAR_PRESCALER_DIV_1 = RTC_MODE2_CTRLA_PRESCALER_DIV1,
/** RTC input clock frequency is prescaled by a factor of 2 */
RTC_CALENDAR_PRESCALER_DIV_2 = RTC_MODE2_CTRLA_PRESCALER_DIV2,
/** RTC input clock frequency is prescaled by a factor of 4 */
RTC_CALENDAR_PRESCALER_DIV_4 = RTC_MODE2_CTRLA_PRESCALER_DIV4,
/** RTC input clock frequency is prescaled by a factor of 8 */
RTC_CALENDAR_PRESCALER_DIV_8 = RTC_MODE2_CTRLA_PRESCALER_DIV8,
/** RTC input clock frequency is prescaled by a factor of 16 */
RTC_CALENDAR_PRESCALER_DIV_16 = RTC_MODE2_CTRLA_PRESCALER_DIV16,
/** RTC input clock frequency is prescaled by a factor of 32 */
RTC_CALENDAR_PRESCALER_DIV_32 = RTC_MODE2_CTRLA_PRESCALER_DIV32,
/** RTC input clock frequency is prescaled by a factor of 64 */
RTC_CALENDAR_PRESCALER_DIV_64 = RTC_MODE2_CTRLA_PRESCALER_DIV64,
/** RTC input clock frequency is prescaled by a factor of 128 */
RTC_CALENDAR_PRESCALER_DIV_128 = RTC_MODE2_CTRLA_PRESCALER_DIV128,
/** RTC input clock frequency is prescaled by a factor of 256 */
RTC_CALENDAR_PRESCALER_DIV_256 = RTC_MODE2_CTRLA_PRESCALER_DIV256,
/** RTC input clock frequency is prescaled by a factor of 512 */
RTC_CALENDAR_PRESCALER_DIV_512 = RTC_MODE2_CTRLA_PRESCALER_DIV512,
/** RTC input clock frequency is prescaled by a factor of 1024 */
RTC_CALENDAR_PRESCALER_DIV_1024 = RTC_MODE2_CTRLA_PRESCALER_DIV1024,
};
#else
/**
* \brief RTC input clock prescaler settings.
*
* The available input clock prescaler values for the RTC calendar module.
*/
enum rtc_calendar_prescaler {
/** RTC input clock frequency is prescaled by a factor of 1 */
RTC_CALENDAR_PRESCALER_DIV_1 = RTC_MODE2_CTRL_PRESCALER_DIV1,
/** RTC input clock frequency is prescaled by a factor of 2 */
RTC_CALENDAR_PRESCALER_DIV_2 = RTC_MODE2_CTRL_PRESCALER_DIV2,
/** RTC input clock frequency is prescaled by a factor of 4 */
RTC_CALENDAR_PRESCALER_DIV_4 = RTC_MODE2_CTRL_PRESCALER_DIV4,
/** RTC input clock frequency is prescaled by a factor of 8 */
RTC_CALENDAR_PRESCALER_DIV_8 = RTC_MODE2_CTRL_PRESCALER_DIV8,
/** RTC input clock frequency is prescaled by a factor of 16 */
RTC_CALENDAR_PRESCALER_DIV_16 = RTC_MODE2_CTRL_PRESCALER_DIV16,
/** RTC input clock frequency is prescaled by a factor of 32 */
RTC_CALENDAR_PRESCALER_DIV_32 = RTC_MODE2_CTRL_PRESCALER_DIV32,
/** RTC input clock frequency is prescaled by a factor of 64 */
RTC_CALENDAR_PRESCALER_DIV_64 = RTC_MODE2_CTRL_PRESCALER_DIV64,
/** RTC input clock frequency is prescaled by a factor of 128 */
RTC_CALENDAR_PRESCALER_DIV_128 = RTC_MODE2_CTRL_PRESCALER_DIV128,
/** RTC input clock frequency is prescaled by a factor of 256 */
RTC_CALENDAR_PRESCALER_DIV_256 = RTC_MODE2_CTRL_PRESCALER_DIV256,
/** RTC input clock frequency is prescaled by a factor of 512 */
RTC_CALENDAR_PRESCALER_DIV_512 = RTC_MODE2_CTRL_PRESCALER_DIV512,
/** RTC input clock frequency is prescaled by a factor of 1024 */
RTC_CALENDAR_PRESCALER_DIV_1024 = RTC_MODE2_CTRL_PRESCALER_DIV1024,
};
#endif
#if !defined(__DOXYGEN__)
/**
* \brief Device structure.
*/
struct rtc_module {
/** RTC hardware module */
Rtc *hw;
/** If clock mode 24h */
bool clock_24h;
#ifdef FEATURE_RTC_CONTINUOUSLY_UPDATED
/** If continuously update clock register */
bool continuously_update;
#endif
/** Initial year for counter value 0 */
uint16_t year_init_value;
# if RTC_CALENDAR_ASYNC == true
/** Pointers to callback functions */
volatile rtc_calendar_callback_t callbacks[_RTC_CALENDAR_CALLBACK_N];
/** Mask for registered callbacks */
volatile uint16_t registered_callback;
/** Mask for enabled callbacks */
volatile uint16_t enabled_callback;
# endif
};
#endif
/**
* \brief Available mask options for alarms.
*
* Available mask options for alarms.
*/
enum rtc_calendar_alarm_mask {
/** Alarm disabled */
RTC_CALENDAR_ALARM_MASK_DISABLED = RTC_MODE2_MASK_SEL_OFF,
/** Alarm match on second */
RTC_CALENDAR_ALARM_MASK_SEC = RTC_MODE2_MASK_SEL_SS,
/** Alarm match on second and minute */
RTC_CALENDAR_ALARM_MASK_MIN = RTC_MODE2_MASK_SEL_MMSS,
/** Alarm match on second, minute, and hour */
RTC_CALENDAR_ALARM_MASK_HOUR = RTC_MODE2_MASK_SEL_HHMMSS,
/** Alarm match on second, minute, hour, and day */
RTC_CALENDAR_ALARM_MASK_DAY = RTC_MODE2_MASK_SEL_DDHHMMSS,
/** Alarm match on second, minute, hour, day, and month */
RTC_CALENDAR_ALARM_MASK_MONTH = RTC_MODE2_MASK_SEL_MMDDHHMMSS,
/** Alarm match on second, minute, hour, day, month, and year */
RTC_CALENDAR_ALARM_MASK_YEAR = RTC_MODE2_MASK_SEL_YYMMDDHHMMSS,
};
/**
* \brief RTC Calendar event enable/disable structure.
*
* Event flags for the \ref rtc_calendar_enable_events() and
* \ref rtc_calendar_disable_events().
*/
struct rtc_calendar_events {
/** Generate an output event on each overflow of the RTC count */
bool generate_event_on_overflow;
/** Generate an output event on an alarm channel match against the RTC
* count */
bool generate_event_on_alarm[RTC_NUM_OF_ALARMS];
/** Generate an output event periodically at a binary division of the RTC
* counter frequency
*/
bool generate_event_on_periodic[8];
#ifdef FEATURE_RTC_TAMPER_DETECTION
/** Generate an output event on every tamper input */
bool generate_event_on_tamper;
/** Tamper input event and capture the CLOCK value */
bool on_event_to_tamper;
#endif
};
/**
* \brief Time structure.
*
* Time structure containing the time given by or set to the RTC calendar.
* The structure uses seven values to give second, minute, hour, PM/AM, day,
* month, and year. It should be initialized via the
* \ref rtc_calendar_get_time_defaults() function before use.
*/
struct rtc_calendar_time {
/** Second value */
uint8_t second;
/** Minute value */
uint8_t minute;
/** Hour value */
uint8_t hour;
/** PM/AM value, \c true for PM, or \c false for AM */
bool pm;
/** Day value, where day 1 is the first day of the month */
uint8_t day;
/** Month value, where month 1 is January */
uint8_t month;
/** Year value */
uint16_t year;
};
/**
* \brief Alarm structure.
*
* Alarm structure containing time of the alarm and a mask to determine when
* the alarm will trigger.
*/
struct rtc_calendar_alarm_time {
/** Alarm time */
struct rtc_calendar_time time;
/** Alarm mask to determine on what precision the alarm will match */
enum rtc_calendar_alarm_mask mask;
};
/**
* \brief RTC configuration structure.
*
* Configuration structure for the RTC instance. This structure should
* be initialized using the \ref rtc_calendar_get_config_defaults() before any
* user configurations are set.
*/
struct rtc_calendar_config {
/** Input clock prescaler for the RTC module */
enum rtc_calendar_prescaler prescaler;
/** If \c true, clears the clock on alarm match */
bool clear_on_match;
#ifdef FEATURE_RTC_CONTINUOUSLY_UPDATED
/** If \c true, the digital counter registers will be continuously updated
* so that internal synchronization is not needed when reading the current
* count */
bool continuously_update;
#endif
/** If \c true, time is represented in 24 hour mode */
bool clock_24h;
/** Initial year for counter value 0 */
uint16_t year_init_value;
#if (SAML21XXXB) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30)
/** Enable count read synchronization. The CLOCK value requires
* synchronization when reading. Disabling the synchronization
* will prevent the CLOCK value from displaying the current value. */
bool enable_read_sync;
#endif
/** Alarm values */
struct rtc_calendar_alarm_time alarm[RTC_NUM_OF_ALARMS];
};
/**
* \name Configuration and Initialization
* @{
*/
/**
* \brief Initialize a \c time structure.
*
* This will initialize a given time structure to the time 00:00:00 (hh:mm:ss)
* and date 2000-01-01 (YYYY-MM-DD).
*
* \param[out] time Time structure to initialize
*/
static inline void rtc_calendar_get_time_defaults(
struct rtc_calendar_time *const time)
{
time->second = 0;
time->minute = 0;
time->hour = 0;
time->pm = 0;
time->day = 1;
time->month = 1;
time->year = 2000;
}
/**
* \brief Gets the RTC default settings.
*
* Initializes the configuration structure to the known default values. This
* function should be called at the start of any RTC initiation.
*
* The default configuration is as follows:
* - Input clock divided by a factor of 1024
* - Clear on alarm match off
* - Continuously sync clock off
* - 12 hour calendar
* - Start year 2000 (Year 0 in the counter will be year 2000)
* - Events off
* - Alarms set to January 1. 2000, 00:00:00
* - Alarm will match on second, minute, hour, day, month, and year
* - Clock read synchronization is enabled for SAM L22
*
* \param[out] config Configuration structure to be initialized to default
* values
*/
static inline void rtc_calendar_get_config_defaults(
struct rtc_calendar_config *const config)
{
/* Sanity check argument */
Assert(config);
/* Initialize and set time structure to default */
struct rtc_calendar_time time;
rtc_calendar_get_time_defaults(&time);
/* Set defaults into configuration structure */
config->prescaler = RTC_CALENDAR_PRESCALER_DIV_1024;
config->clear_on_match = false;
#ifdef FEATURE_RTC_CONTINUOUSLY_UPDATED
config->continuously_update = false;
#endif
config->clock_24h = false;
config->year_init_value = 2000;
#if (SAML21XXXB) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30)
config->enable_read_sync = true;
#endif
for (uint8_t i = 0; i < RTC_NUM_OF_ALARMS; i++) {
config->alarm[i].time = time;
config->alarm[i].mask = RTC_CALENDAR_ALARM_MASK_YEAR;
}
}
void rtc_calendar_reset(struct rtc_module *const module);
void rtc_calendar_enable(struct rtc_module *const module);
void rtc_calendar_disable(struct rtc_module *const module);
#if (RTC_INST_NUM > 1) && !defined(__DOXYGEN__)
/**
* \internal Find the index of given RTC module instance.
*
* \param[in] hw RTC module instance pointer
*
* \return Index of the given RTC module instance.
*/
uint8_t _rtc_get_inst_index(
Rtc *const hw)
{
/* List of available RTC modules */
static Rtc *const rtc_modules[RTC_INST_NUM] = RTC_INSTS;
/* Find index for RTC instance */
for (uint32_t i = 0; i < RTC_INST_NUM; i++) {
if (hw == rtc_modules[i]) {
return i;
}
}
/* Invalid data given */
Assert(false);
return 0;
}
#endif /* (RTC_INST_NUM > 1) && !defined(__DOXYGEN__) */
void rtc_calendar_init(
struct rtc_module *const module,
Rtc *const hw,
const struct rtc_calendar_config *const config);
void rtc_calendar_swap_time_mode(struct rtc_module *const module);
enum status_code rtc_calendar_frequency_correction(
struct rtc_module *const module,
const int8_t value);
/** @} */
/** \name Time and Alarm Management
* @{
*/
uint32_t rtc_calendar_time_to_register_value(
struct rtc_module *const module,
const struct rtc_calendar_time *const time);
void rtc_calendar_register_value_to_time(
struct rtc_module *const module,
const uint32_t register_value,
struct rtc_calendar_time *const time);
void rtc_calendar_set_time(
struct rtc_module *const module,
const struct rtc_calendar_time *const time);
void rtc_calendar_get_time(
struct rtc_module *const module,
struct rtc_calendar_time *const time);
enum status_code rtc_calendar_set_alarm(
struct rtc_module *const module,
const struct rtc_calendar_alarm_time *const alarm,
const enum rtc_calendar_alarm alarm_index);
enum status_code rtc_calendar_get_alarm(
struct rtc_module *const module,
struct rtc_calendar_alarm_time *const alarm,
const enum rtc_calendar_alarm alarm_index);
/** @} */
/** \name Status Flag Management
* @{
*/
/**
* \brief Check if an RTC overflow has occurred.
*
* Checks the overflow flag in the RTC. The flag is set when there
* is an overflow in the clock.
*
* \param[in,out] module Pointer to the software instance struct
*
* \return Overflow state of the RTC module.
*
* \retval true If the RTC count value has overflowed
* \retval false If the RTC count value has not overflowed
*/
static inline bool rtc_calendar_is_overflow(struct rtc_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
/* Return status of flag */
return (rtc_module->MODE2.INTFLAG.reg & RTC_MODE2_INTFLAG_OVF);
}
/**
* \brief Clears the RTC overflow flag.
*
* \param[in,out] module Pointer to the software instance struct
*
* Clears the RTC module counter overflow flag, so that new overflow conditions
* can be detected.
*/
static inline void rtc_calendar_clear_overflow(struct rtc_module *const module)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
/* Clear flag */
rtc_module->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_OVF;
}
#ifdef FEATURE_RTC_PERIODIC_INT
/**
* \brief Check if an RTC periodic interval interrupt has occurred.
*
* Checks the periodic interval flag in the RTC.
*
* \param[in,out] module RTC hardware module
* \param[in] n RTC periodic interval interrupt
*
* \return Periodic interval interrupt state of the RTC module.
*
* \retval true RTC periodic interval interrupt occur
* \retval false RTC periodic interval interrupt doesn't occur
*/
static inline bool rtc_calendar_is_periodic_interval(struct rtc_module *const module,
enum rtc_calendar_periodic_interval n)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
/* Return status of flag */
return (rtc_module->MODE2.INTFLAG.reg & RTC_MODE2_INTFLAG_PER(1 << n));
}
/**
* \brief Clears the RTC periodic interval flag.
*
* Clears the RTC module counter periodic interval flag, so that new periodic
* interval conditions can be detected.
*
* \param[in,out] module RTC hardware module
* \param[in] n RTC periodic interval interrupt
*/
static inline void rtc_calendar_clear_periodic_interval(struct rtc_module *const module,
enum rtc_calendar_periodic_interval n)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
/* Clear periodic interval flag */
rtc_module->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_PER(1 << n);
}
#endif
/**
* \brief Check the RTC alarm flag.
*
* Check if the specified alarm flag is set. The flag is set when there
* is a compare match between the alarm value and the clock.
*
* \param[in,out] module Pointer to the software instance struct
* \param[in] alarm_index Index of the alarm to check
*
* \returns Match status of the specified alarm.
*
* \retval true If the specified alarm has matched the current time
* \retval false If the specified alarm has not matched the current time
*/
static inline bool rtc_calendar_is_alarm_match(
struct rtc_module *const module,
const enum rtc_calendar_alarm alarm_index)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
/* Sanity check */
if ((uint32_t)alarm_index > RTC_NUM_OF_ALARMS) {
Assert(false);
return false;
}
/* Return int flag status */
return (rtc_module->MODE2.INTFLAG.reg & RTC_MODE2_INTFLAG_ALARM(1 << alarm_index));
}
/**
* \brief Clears the RTC alarm match flag.
*
* Clear the requested alarm match flag, so that future alarm matches can be
* determined.
*
* \param[in,out] module Pointer to the software instance struct
* \param[in] alarm_index The index of the alarm match to clear
*
* \return Status of the alarm match clear operation.
*
* \retval STATUS_OK If flag was cleared correctly
* \retval STATUS_ERR_INVALID_ARG If invalid argument(s) were provided
*/
static inline enum status_code rtc_calendar_clear_alarm_match(
struct rtc_module *const module,
const enum rtc_calendar_alarm alarm_index)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
/* Sanity check */
if ((uint32_t)alarm_index > RTC_NUM_OF_ALARMS) {
Assert(false);
return STATUS_ERR_INVALID_ARG;
}
/* Clear flag */
rtc_module->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM(1 << alarm_index);
return STATUS_OK;
}
/** @} */
/**
* \name Event Management
* @{
*/
/**
* \brief Enables an RTC event output.
*
* Enables one or more output events from the RTC module. See
* \ref rtc_calendar_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in,out] module Pointer to the software instance struct
* \param[in] events Struct containing flags of events to enable
*/
static inline void rtc_calendar_enable_events(
struct rtc_module *const module,
struct rtc_calendar_events *const events)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
uint32_t event_mask = 0;
/* Check if the user has requested an overflow event */
if (events->generate_event_on_overflow) {
event_mask |= RTC_MODE2_EVCTRL_OVFEO;
}
/* Check if the user has requested any alarm events */
for (uint8_t i = 0; i < RTC_NUM_OF_ALARMS; i++) {
if (events->generate_event_on_alarm[i]) {
event_mask |= RTC_MODE2_EVCTRL_ALARMEO(1 << i);
}
}
/* Check if the user has requested any periodic events */
for (uint8_t i = 0; i < 8; i++) {
if (events->generate_event_on_periodic[i]) {
event_mask |= RTC_MODE2_EVCTRL_PEREO(1 << i);
}
}
#ifdef FEATURE_RTC_TAMPER_DETECTION
/* Check if the user has requested a tamper event output */
if (events->generate_event_on_tamper) {
event_mask |= RTC_MODE2_EVCTRL_TAMPEREO;
}
/* Check if the user has requested a tamper event input */
if (events->on_event_to_tamper) {
event_mask |= RTC_MODE2_EVCTRL_TAMPEVEI;
}
#endif
/* Enable given event(s) */
rtc_module->MODE2.EVCTRL.reg |= event_mask;
}
/**
* \brief Disables an RTC event output.
*
* Disabled one or more output events from the RTC module. See
* \ref rtc_calendar_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in,out] module Pointer to the software instance struct
* \param[in] events Struct containing flags of events to disable
*/
static inline void rtc_calendar_disable_events(
struct rtc_module *const module,
struct rtc_calendar_events *const events)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Rtc *const rtc_module = module->hw;
uint32_t event_mask = 0;
/* Check if the user has requested an overflow event */
if (events->generate_event_on_overflow) {
event_mask |= RTC_MODE2_EVCTRL_OVFEO;
}
/* Check if the user has requested any alarm events */
for (uint8_t i = 0; i < RTC_NUM_OF_ALARMS; i++) {
if (events->generate_event_on_alarm[i]) {
event_mask |= RTC_MODE2_EVCTRL_ALARMEO(1 << i);
}
}
/* Check if the user has requested any periodic events */
for (uint8_t i = 0; i < 8; i++) {
if (events->generate_event_on_periodic[i]) {
event_mask |= RTC_MODE2_EVCTRL_PEREO(1 << i);
}
}
#ifdef FEATURE_RTC_TAMPER_DETECTION
/* Check if the user has requested a tamper event output */
if (events->generate_event_on_tamper) {
event_mask |= RTC_MODE2_EVCTRL_TAMPEREO;
}
/* Check if the user has requested a tamper event input */
if (events->on_event_to_tamper) {
event_mask |= RTC_MODE2_EVCTRL_TAMPEVEI;
}
#endif
/* Disable given event(s) */
rtc_module->MODE2.EVCTRL.reg &= ~event_mask;
}
/** @} */
#ifdef FEATURE_RTC_GENERAL_PURPOSE_REG
/**
* \name RTC General Purpose Registers
* @{
*/
/**
* \brief Write a value into general purpose register.
*
* \param[in] module Pointer to the software instance struct
* \param[in] n General purpose type
* \param[in] index General purpose register index (0..3)
*
*/
static inline void rtc_write_general_purpose_reg(
struct rtc_module *const module,
const uint8_t index,
uint32_t value)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Assert(index <= 3);
Rtc *const rtc_module = module->hw;
rtc_module->MODE0.GP[index].reg = value;
}
/**
* \brief Read the value from general purpose register.
*
* \param[in] module Pointer to the software instance struct
* \param[in] index General purpose register index (0..3)
*
* \return Value of general purpose register.
*/
static inline uint32_t rtc_read_general_purpose_reg(
struct rtc_module *const module,
const uint8_t index)
{
/* Sanity check arguments */
Assert(module);
Assert(module->hw);
Assert(index <= 3);
Rtc *const rtc_module = module->hw;
return rtc_module->MODE0.GP[index].reg;
}
/** @} */
#endif
#ifdef FEATURE_RTC_TAMPER_DETECTION
#include "rtc_tamper.h"
/**
* \brief Get the tamper stamp value.
*
* \param[in,out] module Pointer to the software instance struct
* \param[out] time Pointer to value that filled with tamper stamp time
*/
void rtc_tamper_get_stamp (struct rtc_module *const module,
struct rtc_calendar_time *const time);
#endif
/** @} */
#ifdef __cplusplus
}
#endif
/**
* \page asfdoc_sam0_rtc_calendar_extra Extra Information for RTC (CAL) Driver
*
* \section asfdoc_sam0_rtc_calendar_extra_acronyms Acronyms
* Below is a table listing the acronyms used in this module, along with their
* intended meanings.
*
*
*
* Acronym
* | Description
* |
*
* RTC |
* Real Time Counter |
*
*
* PPM |
* Part Per Million |
*
*
* RC |
* Resistor/Capacitor |
*
*
*
*
* \section asfdoc_sam0_rtc_calendar_extra_dependencies Dependencies
* This driver has the following dependencies:
*
* - None
*
*
* \section asfdoc_sam0_rtc_calendar_extra_errata Errata
* There are no errata related to this driver.
*
*
* \section asfdoc_sam0_rtc_calendar_extra_history Module History
* An overview of the module history is presented in the table below, with
* details on the enhancements and fixes made to the module since its first
* release. The current version of this corresponds to the newest version in
* the table.
*
*
*
* Changelog |
*
*
* Added support for RTC tamper feature |
*
*
* Added driver instance parameter to all API function calls, except
* get_config_defaults |
*
*
* Updated initialization function to also enable the digital interface
* clock to the module if it is disabled |
*
*
* Initial release |
*
*
*/
/**
* \page asfdoc_sam0_rtc_calendar_exqsg Examples for RTC CAL Driver
*
* This is a list of the available Quick Start guides (QSGs) and example
* applications for \ref asfdoc_sam0_rtc_calendar_group. QSGs are simple
* examples with step-by-step instructions to configure and use this driver in a
* selection of use cases. Note that a QSG can be compiled as a standalone
* application or be added to the user application.
*
* - \subpage asfdoc_sam0_rtc_calendar_basic_use_case
* \if RTC_CALENDAR_CALLBACK_MODE
* - \subpage asfdoc_sam0_rtc_calendar_callback_use_case
* \endif
*
* \page asfdoc_sam0_rtc_calendar_document_revision_history Document Revision History
*
*
*
* Doc. Rev.
* | Date
* | Comments
* |
*
* 42126E |
* 12/2015 |
* Added support for SAM L21/L22, SAMR30, SAM C21, SAM D09, and SAM DA1 |
*
*
* 42126D |
* 12/2014 |
* Added support for SAM R21 and SAM D10/D11 |
*
*
* 42126C |
* 01/2014 |
* Added support for SAM D21 |
*
*
* 42126B |
* 06/2013 |
* Added additional documentation on the event system. Corrected
* documentation typos |
*
*
* 42126A |
* 06/2013 |
* Initial document release |
*
*
*/
#endif /* RTC_CALENDAR_H_INCLUDED */