memheap.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. * File : memheap.c
  8. *
  9. * Change Logs:
  10. * Date Author Notes
  11. * 2012-04-10 Bernard first implementation
  12. * 2012-10-16 Bernard add the mutex lock for heap object.
  13. * 2012-12-29 Bernard memheap can be used as system heap.
  14. * change mutex lock to semaphore lock.
  15. * 2013-04-10 Bernard add rt_memheap_realloc function.
  16. * 2013-05-24 Bernard fix the rt_memheap_realloc issue.
  17. * 2013-07-11 Grissiom fix the memory block splitting issue.
  18. * 2013-07-15 Grissiom optimize rt_memheap_realloc
  19. * 2021-06-03 Flybreak Fix the crash problem after opening Oz optimization on ac6.
  20. * 2023-03-01 Bernard Fix the alignment issue for minimal size
  21. */
  22. #include <rthw.h>
  23. #include <rtthread.h>
  24. #ifdef RT_USING_MEMHEAP
  25. #define DBG_TAG "kernel.memheap"
  26. #define DBG_LVL DBG_INFO
  27. #include <rtdbg.h>
  28. /* dynamic pool magic and mask */
  29. #define RT_MEMHEAP_MAGIC 0x1ea01ea0
  30. #define RT_MEMHEAP_MASK 0xFFFFFFFE
  31. #define RT_MEMHEAP_USED 0x01
  32. #define RT_MEMHEAP_FREED 0x00
  33. #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
  34. #define RT_MEMHEAP_MINIALLOC RT_ALIGN(12, RT_ALIGN_SIZE)
  35. #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
  36. #define MEMITEM_SIZE(item) ((rt_uintptr_t)item->next - (rt_uintptr_t)item - RT_MEMHEAP_SIZE)
  37. #define MEMITEM(ptr) (struct rt_memheap_item*)((rt_uint8_t*)ptr - RT_MEMHEAP_SIZE)
  38. static void _remove_next_ptr(volatile struct rt_memheap_item *next_ptr)
  39. {
  40. /* Fix the crash problem after opening Oz optimization on ac6 */
  41. /* Fix IAR compiler warning */
  42. next_ptr->next_free->prev_free = next_ptr->prev_free;
  43. next_ptr->prev_free->next_free = next_ptr->next_free;
  44. next_ptr->next->prev = next_ptr->prev;
  45. next_ptr->prev->next = next_ptr->next;
  46. }
  47. /**
  48. * @brief This function initializes a piece of memory called memheap.
  49. *
  50. * @note The initialized memory pool will be:
  51. * +-----------------------------------+--------------------------+
  52. * | whole freed memory block | Used Memory Block Tailer |
  53. * +-----------------------------------+--------------------------+
  54. *
  55. * block_list --> whole freed memory block
  56. *
  57. * The length of Used Memory Block Tailer is 0,
  58. * which is prevents block merging across list
  59. *
  60. * @param memheap is a pointer of the memheap object.
  61. *
  62. * @param name is the name of the memheap.
  63. *
  64. * @param start_addr is the start address of the memheap.
  65. *
  66. * @param size is the size of the memheap.
  67. *
  68. * @return RT_EOK
  69. */
  70. rt_err_t rt_memheap_init(struct rt_memheap *memheap,
  71. const char *name,
  72. void *start_addr,
  73. rt_size_t size)
  74. {
  75. struct rt_memheap_item *item;
  76. RT_ASSERT(memheap != RT_NULL);
  77. /* initialize pool object */
  78. rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
  79. memheap->start_addr = start_addr;
  80. memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
  81. memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
  82. memheap->max_used_size = memheap->pool_size - memheap->available_size;
  83. /* initialize the free list header */
  84. item = &(memheap->free_header);
  85. item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  86. item->pool_ptr = memheap;
  87. item->next = RT_NULL;
  88. item->prev = RT_NULL;
  89. item->next_free = item;
  90. item->prev_free = item;
  91. /* set the free list to free list header */
  92. memheap->free_list = item;
  93. /* initialize the first big memory block */
  94. item = (struct rt_memheap_item *)start_addr;
  95. item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  96. item->pool_ptr = memheap;
  97. item->next = RT_NULL;
  98. item->prev = RT_NULL;
  99. item->next_free = item;
  100. item->prev_free = item;
  101. #ifdef RT_USING_MEMTRACE
  102. rt_memset(item->owner_thread_name, ' ', sizeof(item->owner_thread_name));
  103. #endif /* RT_USING_MEMTRACE */
  104. item->next = (struct rt_memheap_item *)
  105. ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
  106. item->prev = item->next;
  107. /* block list header */
  108. memheap->block_list = item;
  109. /* place the big memory block to free list */
  110. item->next_free = memheap->free_list->next_free;
  111. item->prev_free = memheap->free_list;
  112. memheap->free_list->next_free->prev_free = item;
  113. memheap->free_list->next_free = item;
  114. /* move to the end of memory pool to build a small tailer block,
  115. * which prevents block merging
  116. */
  117. item = item->next;
  118. /* it's a used memory block */
  119. item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED);
  120. item->pool_ptr = memheap;
  121. item->next = (struct rt_memheap_item *)start_addr;
  122. item->prev = (struct rt_memheap_item *)start_addr;
  123. /* not in free list */
  124. item->next_free = item->prev_free = RT_NULL;
  125. /* initialize semaphore lock */
  126. rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_PRIO);
  127. memheap->locked = RT_FALSE;
  128. LOG_D("memory heap: start addr 0x%08x, size %d, free list header 0x%08x",
  129. start_addr, size, &(memheap->free_header));
  130. return RT_EOK;
  131. }
  132. RTM_EXPORT(rt_memheap_init);
  133. /**
  134. * @brief This function will remove a memheap from the system.
  135. *
  136. * @param heap is a pointer of memheap object.
  137. *
  138. * @return RT_EOK
  139. */
  140. rt_err_t rt_memheap_detach(struct rt_memheap *heap)
  141. {
  142. RT_ASSERT(heap);
  143. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  144. RT_ASSERT(rt_object_is_systemobject(&heap->parent));
  145. rt_sem_detach(&heap->lock);
  146. rt_object_detach(&(heap->parent));
  147. /* Return a successful completion. */
  148. return RT_EOK;
  149. }
  150. RTM_EXPORT(rt_memheap_detach);
  151. /**
  152. * @brief Allocate a block of memory with a minimum of 'size' bytes on memheap.
  153. *
  154. * @param heap is a pointer for memheap object.
  155. *
  156. * @param size is the minimum size of the requested block in bytes.
  157. *
  158. * @return the pointer to allocated memory or NULL if no free memory was found.
  159. */
  160. void *rt_memheap_alloc(struct rt_memheap *heap, rt_size_t size)
  161. {
  162. rt_err_t result;
  163. rt_size_t free_size;
  164. struct rt_memheap_item *header_ptr;
  165. RT_ASSERT(heap != RT_NULL);
  166. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  167. /* align allocated size */
  168. size = RT_ALIGN(size, RT_ALIGN_SIZE);
  169. if (size < RT_MEMHEAP_MINIALLOC)
  170. size = RT_MEMHEAP_MINIALLOC;
  171. LOG_D("allocate %d on heap:%8.*s",
  172. size, RT_NAME_MAX, heap->parent.name);
  173. if (size < heap->available_size)
  174. {
  175. /* search on free list */
  176. free_size = 0;
  177. /* lock memheap */
  178. if (heap->locked == RT_FALSE)
  179. {
  180. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  181. if (result != RT_EOK)
  182. {
  183. rt_set_errno(result);
  184. return RT_NULL;
  185. }
  186. }
  187. /* get the first free memory block */
  188. header_ptr = heap->free_list->next_free;
  189. while (header_ptr != heap->free_list && free_size < size)
  190. {
  191. /* get current freed memory block size */
  192. free_size = MEMITEM_SIZE(header_ptr);
  193. if (free_size < size)
  194. {
  195. /* move to next free memory block */
  196. header_ptr = header_ptr->next_free;
  197. }
  198. }
  199. /* determine if the memory is available. */
  200. if (free_size >= size)
  201. {
  202. /* a block that satisfies the request has been found. */
  203. /* determine if the block needs to be split. */
  204. if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
  205. {
  206. struct rt_memheap_item *new_ptr;
  207. /* split the block. */
  208. new_ptr = (struct rt_memheap_item *)
  209. (((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
  210. LOG_D("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
  211. header_ptr,
  212. header_ptr->next,
  213. header_ptr->prev,
  214. new_ptr);
  215. /* mark the new block as a memory block and freed. */
  216. new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  217. /* put the pool pointer into the new block. */
  218. new_ptr->pool_ptr = heap;
  219. #ifdef RT_USING_MEMTRACE
  220. rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name));
  221. #endif /* RT_USING_MEMTRACE */
  222. /* break down the block list */
  223. new_ptr->prev = header_ptr;
  224. new_ptr->next = header_ptr->next;
  225. header_ptr->next->prev = new_ptr;
  226. header_ptr->next = new_ptr;
  227. /* remove header ptr from free list */
  228. header_ptr->next_free->prev_free = header_ptr->prev_free;
  229. header_ptr->prev_free->next_free = header_ptr->next_free;
  230. header_ptr->next_free = RT_NULL;
  231. header_ptr->prev_free = RT_NULL;
  232. /* insert new_ptr to free list */
  233. new_ptr->next_free = heap->free_list->next_free;
  234. new_ptr->prev_free = heap->free_list;
  235. heap->free_list->next_free->prev_free = new_ptr;
  236. heap->free_list->next_free = new_ptr;
  237. LOG_D("new ptr: next_free 0x%08x, prev_free 0x%08x",
  238. new_ptr->next_free,
  239. new_ptr->prev_free);
  240. /* decrement the available byte count. */
  241. heap->available_size = heap->available_size -
  242. size -
  243. RT_MEMHEAP_SIZE;
  244. if (heap->pool_size - heap->available_size > heap->max_used_size)
  245. heap->max_used_size = heap->pool_size - heap->available_size;
  246. }
  247. else
  248. {
  249. /* decrement the entire free size from the available bytes count. */
  250. heap->available_size = heap->available_size - free_size;
  251. if (heap->pool_size - heap->available_size > heap->max_used_size)
  252. heap->max_used_size = heap->pool_size - heap->available_size;
  253. /* remove header_ptr from free list */
  254. LOG_D("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
  255. header_ptr,
  256. header_ptr->next_free,
  257. header_ptr->prev_free);
  258. header_ptr->next_free->prev_free = header_ptr->prev_free;
  259. header_ptr->prev_free->next_free = header_ptr->next_free;
  260. header_ptr->next_free = RT_NULL;
  261. header_ptr->prev_free = RT_NULL;
  262. }
  263. /* Mark the allocated block as not available. */
  264. header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED);
  265. #ifdef RT_USING_MEMTRACE
  266. if (rt_thread_self())
  267. rt_memcpy(header_ptr->owner_thread_name, rt_thread_self()->parent.name, sizeof(header_ptr->owner_thread_name));
  268. else
  269. rt_memcpy(header_ptr->owner_thread_name, "NONE", sizeof(header_ptr->owner_thread_name));
  270. #endif /* RT_USING_MEMTRACE */
  271. if (heap->locked == RT_FALSE)
  272. {
  273. /* release lock */
  274. rt_sem_release(&(heap->lock));
  275. }
  276. /* Return a memory address to the caller. */
  277. LOG_D("alloc mem: memory[0x%08x], heap[0x%08x], size: %d",
  278. (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE),
  279. header_ptr,
  280. size);
  281. return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE);
  282. }
  283. if (heap->locked == RT_FALSE)
  284. {
  285. /* release lock */
  286. rt_sem_release(&(heap->lock));
  287. }
  288. }
  289. LOG_D("allocate memory: failed");
  290. /* Return the completion status. */
  291. return RT_NULL;
  292. }
  293. RTM_EXPORT(rt_memheap_alloc);
  294. /**
  295. * @brief This function will change the size of previously allocated memory block.
  296. *
  297. * @param heap is a pointer to the memheap object, which will reallocate
  298. * memory from the block
  299. *
  300. * @param ptr is a pointer to start address of memory.
  301. *
  302. * @param newsize is the required new size.
  303. *
  304. * @return the changed memory block address.
  305. */
  306. void *rt_memheap_realloc(struct rt_memheap *heap, void *ptr, rt_size_t newsize)
  307. {
  308. rt_err_t result;
  309. rt_size_t oldsize;
  310. struct rt_memheap_item *header_ptr;
  311. struct rt_memheap_item *new_ptr;
  312. RT_ASSERT(heap);
  313. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  314. if (newsize == 0)
  315. {
  316. rt_memheap_free(ptr);
  317. return RT_NULL;
  318. }
  319. /* align allocated size */
  320. newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
  321. if (newsize < RT_MEMHEAP_MINIALLOC)
  322. newsize = RT_MEMHEAP_MINIALLOC;
  323. if (ptr == RT_NULL)
  324. {
  325. return rt_memheap_alloc(heap, newsize);
  326. }
  327. /* get memory block header and get the size of memory block */
  328. header_ptr = (struct rt_memheap_item *)
  329. ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
  330. oldsize = MEMITEM_SIZE(header_ptr);
  331. /* re-allocate memory */
  332. if (newsize > oldsize)
  333. {
  334. void *new_ptr;
  335. volatile struct rt_memheap_item *next_ptr;
  336. if (heap->locked == RT_FALSE)
  337. {
  338. /* lock memheap */
  339. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  340. if (result != RT_EOK)
  341. {
  342. rt_set_errno(result);
  343. return RT_NULL;
  344. }
  345. }
  346. next_ptr = header_ptr->next;
  347. /* header_ptr should not be the tail */
  348. RT_ASSERT(next_ptr > header_ptr);
  349. /* check whether the following free space is enough to expand */
  350. if (!RT_MEMHEAP_IS_USED(next_ptr))
  351. {
  352. rt_int32_t nextsize;
  353. nextsize = MEMITEM_SIZE(next_ptr);
  354. RT_ASSERT(next_ptr > 0);
  355. /* Here is the ASCII art of the situation that we can make use of
  356. * the next free node without alloc/memcpy, |*| is the control
  357. * block:
  358. *
  359. * oldsize free node
  360. * |*|-----------|*|----------------------|*|
  361. * newsize >= minialloc
  362. * |*|----------------|*|-----------------|*|
  363. */
  364. if (nextsize + oldsize > newsize + RT_MEMHEAP_MINIALLOC)
  365. {
  366. /* decrement the entire free size from the available bytes count. */
  367. heap->available_size = heap->available_size - (newsize - oldsize);
  368. if (heap->pool_size - heap->available_size > heap->max_used_size)
  369. heap->max_used_size = heap->pool_size - heap->available_size;
  370. /* remove next_ptr from free list */
  371. LOG_D("remove block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
  372. next_ptr,
  373. next_ptr->next_free,
  374. next_ptr->prev_free);
  375. _remove_next_ptr(next_ptr);
  376. /* build a new one on the right place */
  377. next_ptr = (struct rt_memheap_item *)((char *)ptr + newsize);
  378. LOG_D("new free block: block[0x%08x] nextm[0x%08x] prevm[0x%08x]",
  379. next_ptr,
  380. next_ptr->next,
  381. next_ptr->prev);
  382. /* mark the new block as a memory block and freed. */
  383. next_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  384. /* put the pool pointer into the new block. */
  385. next_ptr->pool_ptr = heap;
  386. #ifdef RT_USING_MEMTRACE
  387. rt_memset((void *)next_ptr->owner_thread_name, ' ', sizeof(next_ptr->owner_thread_name));
  388. #endif /* RT_USING_MEMTRACE */
  389. next_ptr->prev = header_ptr;
  390. next_ptr->next = header_ptr->next;
  391. header_ptr->next->prev = (struct rt_memheap_item *)next_ptr;
  392. header_ptr->next = (struct rt_memheap_item *)next_ptr;
  393. /* insert next_ptr to free list */
  394. next_ptr->next_free = heap->free_list->next_free;
  395. next_ptr->prev_free = heap->free_list;
  396. heap->free_list->next_free->prev_free = (struct rt_memheap_item *)next_ptr;
  397. heap->free_list->next_free = (struct rt_memheap_item *)next_ptr;
  398. LOG_D("new ptr: next_free 0x%08x, prev_free 0x%08x",
  399. next_ptr->next_free,
  400. next_ptr->prev_free);
  401. if (heap->locked == RT_FALSE)
  402. {
  403. /* release lock */
  404. rt_sem_release(&(heap->lock));
  405. }
  406. return ptr;
  407. }
  408. }
  409. if (heap->locked == RT_FALSE)
  410. {
  411. /* release lock */
  412. rt_sem_release(&(heap->lock));
  413. }
  414. /* re-allocate a memory block */
  415. new_ptr = (void *)rt_memheap_alloc(heap, newsize);
  416. if (new_ptr != RT_NULL)
  417. {
  418. rt_memcpy(new_ptr, ptr, oldsize < newsize ? oldsize : newsize);
  419. rt_memheap_free(ptr);
  420. }
  421. return new_ptr;
  422. }
  423. /* don't split when there is less than one node space left */
  424. if (newsize + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC >= oldsize)
  425. return ptr;
  426. if (heap->locked == RT_FALSE)
  427. {
  428. /* lock memheap */
  429. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  430. if (result != RT_EOK)
  431. {
  432. rt_set_errno(result);
  433. return RT_NULL;
  434. }
  435. }
  436. /* split the block. */
  437. new_ptr = (struct rt_memheap_item *)
  438. (((rt_uint8_t *)header_ptr) + newsize + RT_MEMHEAP_SIZE);
  439. LOG_D("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
  440. header_ptr,
  441. header_ptr->next,
  442. header_ptr->prev,
  443. new_ptr);
  444. /* mark the new block as a memory block and freed. */
  445. new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  446. /* put the pool pointer into the new block. */
  447. new_ptr->pool_ptr = heap;
  448. #ifdef RT_USING_MEMTRACE
  449. rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name));
  450. #endif /* RT_USING_MEMTRACE */
  451. /* break down the block list */
  452. new_ptr->prev = header_ptr;
  453. new_ptr->next = header_ptr->next;
  454. header_ptr->next->prev = new_ptr;
  455. header_ptr->next = new_ptr;
  456. /* determine if the block can be merged with the next neighbor. */
  457. if (!RT_MEMHEAP_IS_USED(new_ptr->next))
  458. {
  459. struct rt_memheap_item *free_ptr;
  460. /* merge block with next neighbor. */
  461. free_ptr = new_ptr->next;
  462. heap->available_size = heap->available_size - MEMITEM_SIZE(free_ptr);
  463. LOG_D("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
  464. header_ptr, header_ptr->next_free, header_ptr->prev_free);
  465. free_ptr->next->prev = new_ptr;
  466. new_ptr->next = free_ptr->next;
  467. /* remove free ptr from free list */
  468. free_ptr->next_free->prev_free = free_ptr->prev_free;
  469. free_ptr->prev_free->next_free = free_ptr->next_free;
  470. }
  471. /* insert the split block to free list */
  472. new_ptr->next_free = heap->free_list->next_free;
  473. new_ptr->prev_free = heap->free_list;
  474. heap->free_list->next_free->prev_free = new_ptr;
  475. heap->free_list->next_free = new_ptr;
  476. LOG_D("new free ptr: next_free 0x%08x, prev_free 0x%08x",
  477. new_ptr->next_free,
  478. new_ptr->prev_free);
  479. /* increment the available byte count. */
  480. heap->available_size = heap->available_size + MEMITEM_SIZE(new_ptr);
  481. if (heap->locked == RT_FALSE)
  482. {
  483. /* release lock */
  484. rt_sem_release(&(heap->lock));
  485. }
  486. /* return the old memory block */
  487. return ptr;
  488. }
  489. RTM_EXPORT(rt_memheap_realloc);
  490. /**
  491. * @brief This function will release the allocated memory block by
  492. * rt_malloc. The released memory block is taken back to system heap.
  493. *
  494. * @param ptr the address of memory which will be released.
  495. */
  496. void rt_memheap_free(void *ptr)
  497. {
  498. rt_err_t result;
  499. struct rt_memheap *heap;
  500. struct rt_memheap_item *header_ptr, *new_ptr;
  501. rt_bool_t insert_header;
  502. /* NULL check */
  503. if (ptr == RT_NULL) return;
  504. /* set initial status as OK */
  505. insert_header = RT_TRUE;
  506. new_ptr = RT_NULL;
  507. header_ptr = (struct rt_memheap_item *)
  508. ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
  509. LOG_D("free memory: memory[0x%08x], block[0x%08x]",
  510. ptr, header_ptr);
  511. /* check magic */
  512. if (header_ptr->magic != (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED) ||
  513. (header_ptr->next->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC)
  514. {
  515. LOG_D("bad magic:0x%08x @ memheap",
  516. header_ptr->magic);
  517. RT_ASSERT(header_ptr->magic == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED));
  518. /* check whether this block of memory has been over-written. */
  519. RT_ASSERT((header_ptr->next->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  520. }
  521. /* get pool ptr */
  522. heap = header_ptr->pool_ptr;
  523. RT_ASSERT(heap);
  524. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  525. if (heap->locked == RT_FALSE)
  526. {
  527. /* lock memheap */
  528. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  529. if (result != RT_EOK)
  530. {
  531. rt_set_errno(result);
  532. return ;
  533. }
  534. }
  535. /* Mark the memory as available. */
  536. header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  537. /* Adjust the available number of bytes. */
  538. heap->available_size += MEMITEM_SIZE(header_ptr);
  539. /* Determine if the block can be merged with the previous neighbor. */
  540. if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
  541. {
  542. LOG_D("merge: left node 0x%08x",
  543. header_ptr->prev);
  544. /* adjust the available number of bytes. */
  545. heap->available_size += RT_MEMHEAP_SIZE;
  546. /* yes, merge block with previous neighbor. */
  547. (header_ptr->prev)->next = header_ptr->next;
  548. (header_ptr->next)->prev = header_ptr->prev;
  549. /* move header pointer to previous. */
  550. header_ptr = header_ptr->prev;
  551. /* don't insert header to free list */
  552. insert_header = RT_FALSE;
  553. }
  554. /* determine if the block can be merged with the next neighbor. */
  555. if (!RT_MEMHEAP_IS_USED(header_ptr->next))
  556. {
  557. /* adjust the available number of bytes. */
  558. heap->available_size += RT_MEMHEAP_SIZE;
  559. /* merge block with next neighbor. */
  560. new_ptr = header_ptr->next;
  561. LOG_D("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
  562. new_ptr, new_ptr->next_free, new_ptr->prev_free);
  563. new_ptr->next->prev = header_ptr;
  564. header_ptr->next = new_ptr->next;
  565. /* remove new ptr from free list */
  566. new_ptr->next_free->prev_free = new_ptr->prev_free;
  567. new_ptr->prev_free->next_free = new_ptr->next_free;
  568. }
  569. if (insert_header)
  570. {
  571. struct rt_memheap_item *n = heap->free_list->next_free;;
  572. #if defined(RT_MEMHEAP_BEST_MODE)
  573. rt_size_t blk_size = MEMITEM_SIZE(header_ptr);
  574. for (;n != heap->free_list; n = n->next_free)
  575. {
  576. rt_size_t m = MEMITEM_SIZE(n);
  577. if (blk_size <= m)
  578. {
  579. break;
  580. }
  581. }
  582. #endif
  583. /* no left merge, insert to free list */
  584. header_ptr->next_free = n;
  585. header_ptr->prev_free = n->prev_free;
  586. n->prev_free->next_free = header_ptr;
  587. n->prev_free = header_ptr;
  588. LOG_D("insert to free list: next_free 0x%08x, prev_free 0x%08x",
  589. header_ptr->next_free, header_ptr->prev_free);
  590. }
  591. #ifdef RT_USING_MEMTRACE
  592. rt_memset(header_ptr->owner_thread_name, ' ', sizeof(header_ptr->owner_thread_name));
  593. #endif /* RT_USING_MEMTRACE */
  594. if (heap->locked == RT_FALSE)
  595. {
  596. /* release lock */
  597. rt_sem_release(&(heap->lock));
  598. }
  599. }
  600. RTM_EXPORT(rt_memheap_free);
  601. /**
  602. * @brief This function will caculate the total memory, the used memory, and
  603. * the max used memory.
  604. *
  605. * @param heap is a pointer to the memheap object, which will reallocate
  606. * memory from the block
  607. *
  608. * @param total is a pointer to get the total size of the memory.
  609. *
  610. * @param used is a pointer to get the size of memory used.
  611. *
  612. * @param max_used is a pointer to get the maximum memory used.
  613. */
  614. void rt_memheap_info(struct rt_memheap *heap,
  615. rt_size_t *total,
  616. rt_size_t *used,
  617. rt_size_t *max_used)
  618. {
  619. rt_err_t result;
  620. if (heap->locked == RT_FALSE)
  621. {
  622. /* lock memheap */
  623. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  624. if (result != RT_EOK)
  625. {
  626. rt_set_errno(result);
  627. return;
  628. }
  629. }
  630. if (total != RT_NULL)
  631. *total = heap->pool_size;
  632. if (used != RT_NULL)
  633. *used = heap->pool_size - heap->available_size;
  634. if (max_used != RT_NULL)
  635. *max_used = heap->max_used_size;
  636. if (heap->locked == RT_FALSE)
  637. {
  638. /* release lock */
  639. rt_sem_release(&(heap->lock));
  640. }
  641. }
  642. #ifdef RT_USING_MEMHEAP_AS_HEAP
  643. /*
  644. * rt_malloc port function
  645. */
  646. void *_memheap_alloc(struct rt_memheap *heap, rt_size_t size)
  647. {
  648. void *ptr;
  649. /* try to allocate in system heap */
  650. ptr = rt_memheap_alloc(heap, size);
  651. #ifdef RT_USING_MEMHEAP_AUTO_BINDING
  652. if (ptr == RT_NULL)
  653. {
  654. struct rt_object *object;
  655. struct rt_list_node *node;
  656. struct rt_memheap *_heap;
  657. struct rt_object_information *information;
  658. /* try to allocate on other memory heap */
  659. information = rt_object_get_information(RT_Object_Class_MemHeap);
  660. RT_ASSERT(information != RT_NULL);
  661. for (node = information->object_list.next;
  662. node != &(information->object_list);
  663. node = node->next)
  664. {
  665. object = rt_list_entry(node, struct rt_object, list);
  666. _heap = (struct rt_memheap *)object;
  667. /* not allocate in the default system heap */
  668. if (heap == _heap)
  669. continue;
  670. ptr = rt_memheap_alloc(_heap, size);
  671. if (ptr != RT_NULL)
  672. break;
  673. }
  674. }
  675. #endif /* RT_USING_MEMHEAP_AUTO_BINDING */
  676. return ptr;
  677. }
  678. /*
  679. * rt_free port function
  680. */
  681. void _memheap_free(void *rmem)
  682. {
  683. rt_memheap_free(rmem);
  684. }
  685. /*
  686. * rt_realloc port function
  687. */
  688. void *_memheap_realloc(struct rt_memheap *heap, void *rmem, rt_size_t newsize)
  689. {
  690. void *new_ptr;
  691. struct rt_memheap_item *header_ptr;
  692. if (rmem == RT_NULL)
  693. return _memheap_alloc(heap, newsize);
  694. if (newsize == 0)
  695. {
  696. _memheap_free(rmem);
  697. return RT_NULL;
  698. }
  699. /* get old memory item */
  700. header_ptr = (struct rt_memheap_item *)
  701. ((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE);
  702. new_ptr = rt_memheap_realloc(header_ptr->pool_ptr, rmem, newsize);
  703. if (new_ptr == RT_NULL && newsize != 0)
  704. {
  705. /* allocate memory block from other memheap */
  706. new_ptr = _memheap_alloc(heap, newsize);
  707. if (new_ptr != RT_NULL && rmem != RT_NULL)
  708. {
  709. rt_size_t oldsize;
  710. /* get the size of old memory block */
  711. oldsize = MEMITEM_SIZE(header_ptr);
  712. if (newsize > oldsize)
  713. rt_memcpy(new_ptr, rmem, oldsize);
  714. else
  715. rt_memcpy(new_ptr, rmem, newsize);
  716. _memheap_free(rmem);
  717. }
  718. }
  719. return new_ptr;
  720. }
  721. #endif
  722. #ifdef RT_USING_MEMTRACE
  723. static int memheapcheck(int argc, char *argv[])
  724. {
  725. struct rt_object_information *info;
  726. struct rt_list_node *list;
  727. struct rt_memheap *heap;
  728. struct rt_list_node *node;
  729. struct rt_memheap_item *item;
  730. rt_bool_t has_bad = RT_FALSE;
  731. rt_base_t level;
  732. char *name;
  733. name = argc > 1 ? argv[1] : RT_NULL;
  734. level = rt_hw_interrupt_disable();
  735. info = rt_object_get_information(RT_Object_Class_MemHeap);
  736. list = &info->object_list;
  737. for (node = list->next; node != list; node = node->next)
  738. {
  739. heap = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list);
  740. /* find the specified object */
  741. if (name != RT_NULL && rt_strncmp(name, heap->parent.name, RT_NAME_MAX) != 0)
  742. continue;
  743. /* check memheap */
  744. for (item = heap->block_list; item->next != heap->block_list; item = item->next)
  745. {
  746. /* check magic */
  747. if (!((item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED) ||
  748. (item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)))
  749. {
  750. has_bad = RT_TRUE;
  751. break;
  752. }
  753. /* check pool_ptr */
  754. if (heap != item->pool_ptr)
  755. {
  756. has_bad = RT_TRUE;
  757. break;
  758. }
  759. /* check next and prev */
  760. if (!((rt_uintptr_t)item->next <= (rt_uintptr_t)((rt_uintptr_t)heap->start_addr + heap->pool_size) &&
  761. (rt_uintptr_t)item->prev >= (rt_uintptr_t)heap->start_addr) &&
  762. (rt_uintptr_t)item->next == RT_ALIGN((rt_uintptr_t)item->next, RT_ALIGN_SIZE) &&
  763. (rt_uintptr_t)item->prev == RT_ALIGN((rt_uintptr_t)item->prev, RT_ALIGN_SIZE))
  764. {
  765. has_bad = RT_TRUE;
  766. break;
  767. }
  768. /* check item */
  769. if (item->next == item->next->prev)
  770. {
  771. has_bad = RT_TRUE;
  772. break;
  773. }
  774. }
  775. }
  776. rt_hw_interrupt_enable(level);
  777. if (has_bad)
  778. {
  779. rt_kprintf("Memory block wrong:\n");
  780. rt_kprintf("name: %s\n", heap->parent.name);
  781. rt_kprintf("item: 0x%p\n", item);
  782. }
  783. return 0;
  784. }
  785. MSH_CMD_EXPORT(memheapcheck, check memory for memheap);
  786. static int memheaptrace(int argc, char *argv[])
  787. {
  788. struct rt_object_information *info;
  789. struct rt_list_node *list;
  790. struct rt_memheap *mh;
  791. struct rt_list_node *node;
  792. char *name;
  793. name = argc > 1 ? argv[1] : RT_NULL;
  794. info = rt_object_get_information(RT_Object_Class_MemHeap);
  795. list = &info->object_list;
  796. for (node = list->next; node != list; node = node->next)
  797. {
  798. struct rt_memheap_item *header_ptr;
  799. long block_size;
  800. mh = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list);
  801. /* find the specified object */
  802. if (name != RT_NULL && rt_strncmp(name, mh->parent.name, RT_NAME_MAX) != 0)
  803. continue;
  804. /* memheap dump */
  805. rt_kprintf("\nmemory heap address:\n");
  806. rt_kprintf("name : %s\n", mh->parent.name);
  807. rt_kprintf("heap_ptr: 0x%p\n", mh->start_addr);
  808. rt_kprintf("free : 0x%08x\n", mh->available_size);
  809. rt_kprintf("max_used: 0x%08x\n", mh->max_used_size);
  810. rt_kprintf("size : 0x%08x\n", mh->pool_size);
  811. rt_kprintf("\n--memory used information --\n");
  812. /* memheap item */
  813. for (header_ptr = mh->block_list;
  814. header_ptr->next != mh->block_list;
  815. header_ptr = header_ptr->next)
  816. {
  817. if ((header_ptr->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC)
  818. {
  819. rt_kprintf("[0x%p - incorrect magic: 0x%08x\n",
  820. header_ptr, header_ptr->magic);
  821. break;
  822. }
  823. /* get current memory block size */
  824. block_size = MEMITEM_SIZE(header_ptr);
  825. if (block_size < 0)
  826. break;
  827. rt_kprintf("[0x%p - ", header_ptr);
  828. if (block_size < 1024)
  829. rt_kprintf("%5d", block_size);
  830. else if (block_size < 1024 * 1024)
  831. rt_kprintf("%4dK", block_size / 1024);
  832. else if (block_size < 1024 * 1024 * 100)
  833. rt_kprintf("%2d.%dM", block_size / (1024 * 1024), (block_size % (1024 * 1024) * 10) / (1024 * 1024));
  834. else
  835. rt_kprintf("%4dM", block_size / (1024 * 1024));
  836. /* dump thread name */
  837. rt_kprintf("] %c%c%c%c\n",
  838. header_ptr->owner_thread_name[0],
  839. header_ptr->owner_thread_name[1],
  840. header_ptr->owner_thread_name[2],
  841. header_ptr->owner_thread_name[3]);
  842. }
  843. }
  844. return 0;
  845. }
  846. #ifdef RT_USING_FINSH
  847. #include <finsh.h>
  848. MSH_CMD_EXPORT(memheaptrace, dump memory trace for memheap);
  849. #endif /* RT_USING_FINSH */
  850. #endif /* RT_USING_MEMTRACE */
  851. #endif /* RT_USING_MEMHEAP */