1
0

serial.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2006-03-13 bernard first version
  9. * 2012-05-15 lgnq modified according bernard's implementation.
  10. * 2012-05-28 bernard code cleanup
  11. * 2012-11-23 bernard fix compiler warning.
  12. * 2013-02-20 bernard use RT_SERIAL_RB_BUFSZ to define
  13. * the size of ring buffer.
  14. * 2014-07-10 bernard rewrite serial framework
  15. * 2014-12-31 bernard use open_flag for poll_tx stream mode.
  16. * 2015-05-19 Quintin fix DMA tx mod tx_dma->activated flag !=RT_FALSE BUG
  17. * in open function.
  18. * 2015-11-10 bernard fix the poll rx issue when there is no data.
  19. * 2016-05-10 armink add fifo mode to DMA rx when serial->config.bufsz != 0.
  20. * 2017-01-19 aubr.cool prevent change serial rx bufsz when serial is opened.
  21. * 2017-11-07 JasonJia fix data bits error issue when using tcsetattr.
  22. * 2017-11-15 JasonJia fix poll rx issue when data is full.
  23. * add TCFLSH and FIONREAD support.
  24. * 2018-12-08 Ernest Chen add DMA choice
  25. */
  26. #include <rthw.h>
  27. #include <rtthread.h>
  28. #include <rtdevice.h>
  29. // #define DEBUG_ENABLE
  30. #define DEBUG_LEVEL DBG_LOG
  31. #define DBG_SECTION_NAME "UART"
  32. #define DEBUG_COLOR
  33. #include <rtdbg.h>
  34. #ifdef RT_USING_POSIX
  35. #include <dfs_posix.h>
  36. #include <dfs_poll.h>
  37. #ifdef RT_USING_POSIX_TERMIOS
  38. #include <posix_termios.h>
  39. #endif
  40. /* it's possible the 'getc/putc' is defined by stdio.h in gcc/newlib. */
  41. #ifdef getc
  42. #undef getc
  43. #endif
  44. #ifdef putc
  45. #undef putc
  46. #endif
  47. static rt_err_t serial_fops_rx_ind(rt_device_t dev, rt_size_t size)
  48. {
  49. rt_wqueue_wakeup(&(dev->wait_queue), (void*)POLLIN);
  50. return RT_EOK;
  51. }
  52. /* fops for serial */
  53. static int serial_fops_open(struct dfs_fd *fd)
  54. {
  55. rt_err_t ret = 0;
  56. rt_uint16_t flags = 0;
  57. rt_device_t device;
  58. device = (rt_device_t)fd->data;
  59. RT_ASSERT(device != RT_NULL);
  60. switch (fd->flags & O_ACCMODE)
  61. {
  62. case O_RDONLY:
  63. LOG_D("fops open: O_RDONLY!");
  64. flags = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_RDONLY;
  65. break;
  66. case O_WRONLY:
  67. LOG_D("fops open: O_WRONLY!");
  68. flags = RT_DEVICE_FLAG_WRONLY;
  69. break;
  70. case O_RDWR:
  71. LOG_D("fops open: O_RDWR!");
  72. flags = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_RDWR;
  73. break;
  74. default:
  75. LOG_E("fops open: unknown mode - %d!", fd->flags & O_ACCMODE);
  76. break;
  77. }
  78. if ((fd->flags & O_ACCMODE) != O_WRONLY)
  79. rt_device_set_rx_indicate(device, serial_fops_rx_ind);
  80. ret = rt_device_open(device, flags);
  81. if (ret == RT_EOK) return 0;
  82. return ret;
  83. }
  84. static int serial_fops_close(struct dfs_fd *fd)
  85. {
  86. rt_device_t device;
  87. device = (rt_device_t)fd->data;
  88. rt_device_set_rx_indicate(device, RT_NULL);
  89. rt_device_close(device);
  90. return 0;
  91. }
  92. static int serial_fops_ioctl(struct dfs_fd *fd, int cmd, void *args)
  93. {
  94. rt_device_t device;
  95. device = (rt_device_t)fd->data;
  96. switch (cmd)
  97. {
  98. case FIONREAD:
  99. break;
  100. case FIONWRITE:
  101. break;
  102. }
  103. return rt_device_control(device, cmd, args);
  104. }
  105. static int serial_fops_read(struct dfs_fd *fd, void *buf, size_t count)
  106. {
  107. int size = 0;
  108. rt_device_t device;
  109. device = (rt_device_t)fd->data;
  110. do
  111. {
  112. size = rt_device_read(device, -1, buf, count);
  113. if (size <= 0)
  114. {
  115. if (fd->flags & O_NONBLOCK)
  116. {
  117. size = -EAGAIN;
  118. break;
  119. }
  120. rt_wqueue_wait(&(device->wait_queue), 0, RT_WAITING_FOREVER);
  121. }
  122. }while (size <= 0);
  123. return size;
  124. }
  125. static int serial_fops_write(struct dfs_fd *fd, const void *buf, size_t count)
  126. {
  127. rt_device_t device;
  128. device = (rt_device_t)fd->data;
  129. return rt_device_write(device, -1, buf, count);
  130. }
  131. static int serial_fops_poll(struct dfs_fd *fd, struct rt_pollreq *req)
  132. {
  133. int mask = 0;
  134. int flags = 0;
  135. rt_device_t device;
  136. struct rt_serial_device *serial;
  137. device = (rt_device_t)fd->data;
  138. RT_ASSERT(device != RT_NULL);
  139. serial = (struct rt_serial_device *)device;
  140. /* only support POLLIN */
  141. flags = fd->flags & O_ACCMODE;
  142. if (flags == O_RDONLY || flags == O_RDWR)
  143. {
  144. rt_base_t level;
  145. struct rt_serial_rx_fifo* rx_fifo;
  146. rt_poll_add(&(device->wait_queue), req);
  147. rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
  148. level = rt_hw_interrupt_disable();
  149. if ((rx_fifo->get_index != rx_fifo->put_index) || (rx_fifo->get_index == rx_fifo->put_index && rx_fifo->is_full == RT_TRUE))
  150. mask |= POLLIN;
  151. rt_hw_interrupt_enable(level);
  152. }
  153. return mask;
  154. }
  155. const static struct dfs_file_ops _serial_fops =
  156. {
  157. serial_fops_open,
  158. serial_fops_close,
  159. serial_fops_ioctl,
  160. serial_fops_read,
  161. serial_fops_write,
  162. RT_NULL, /* flush */
  163. RT_NULL, /* lseek */
  164. RT_NULL, /* getdents */
  165. serial_fops_poll,
  166. };
  167. #endif
  168. /*
  169. * Serial poll routines
  170. */
  171. rt_inline int _serial_poll_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  172. {
  173. int ch;
  174. int size;
  175. RT_ASSERT(serial != RT_NULL);
  176. size = length;
  177. while (length)
  178. {
  179. ch = serial->ops->getc(serial);
  180. if (ch == -1) break;
  181. *data = ch;
  182. data ++; length --;
  183. if (ch == '\n') break;
  184. }
  185. return size - length;
  186. }
  187. rt_inline int _serial_poll_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  188. {
  189. int size;
  190. RT_ASSERT(serial != RT_NULL);
  191. size = length;
  192. while (length)
  193. {
  194. /*
  195. * to be polite with serial console add a line feed
  196. * to the carriage return character
  197. */
  198. if (*data == '\n' && (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
  199. {
  200. serial->ops->putc(serial, '\r');
  201. }
  202. serial->ops->putc(serial, *data);
  203. ++ data;
  204. -- length;
  205. }
  206. return size - length;
  207. }
  208. /*
  209. * Serial interrupt routines
  210. */
  211. rt_inline int _serial_int_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  212. {
  213. int size;
  214. struct rt_serial_rx_fifo* rx_fifo;
  215. RT_ASSERT(serial != RT_NULL);
  216. size = length;
  217. rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
  218. RT_ASSERT(rx_fifo != RT_NULL);
  219. /* read from software FIFO */
  220. while (length)
  221. {
  222. int ch;
  223. rt_base_t level;
  224. /* disable interrupt */
  225. level = rt_hw_interrupt_disable();
  226. /* there's no data: */
  227. if ((rx_fifo->get_index == rx_fifo->put_index) && (rx_fifo->is_full == RT_FALSE))
  228. {
  229. /* no data, enable interrupt and break out */
  230. rt_hw_interrupt_enable(level);
  231. break;
  232. }
  233. /* otherwise there's the data: */
  234. ch = rx_fifo->buffer[rx_fifo->get_index];
  235. rx_fifo->get_index += 1;
  236. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  237. if (rx_fifo->is_full == RT_TRUE)
  238. {
  239. rx_fifo->is_full = RT_FALSE;
  240. }
  241. /* enable interrupt */
  242. rt_hw_interrupt_enable(level);
  243. *data = ch & 0xff;
  244. data ++; length --;
  245. }
  246. return size - length;
  247. }
  248. rt_inline int _serial_int_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  249. {
  250. int size;
  251. struct rt_serial_tx_fifo *tx;
  252. RT_ASSERT(serial != RT_NULL);
  253. size = length;
  254. tx = (struct rt_serial_tx_fifo*) serial->serial_tx;
  255. RT_ASSERT(tx != RT_NULL);
  256. while (length)
  257. {
  258. if (serial->ops->putc(serial, *(char*)data) == -1)
  259. {
  260. rt_completion_wait(&(tx->completion), RT_WAITING_FOREVER);
  261. continue;
  262. }
  263. data ++; length --;
  264. }
  265. return size - length;
  266. }
  267. #if defined(RT_USING_POSIX) || defined(RT_SERIAL_USING_DMA)
  268. static rt_size_t _serial_fifo_calc_recved_len(struct rt_serial_device *serial)
  269. {
  270. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  271. RT_ASSERT(rx_fifo != RT_NULL);
  272. if (rx_fifo->put_index == rx_fifo->get_index)
  273. {
  274. return (rx_fifo->is_full == RT_FALSE ? 0 : serial->config.bufsz);
  275. }
  276. else
  277. {
  278. if (rx_fifo->put_index > rx_fifo->get_index)
  279. {
  280. return rx_fifo->put_index - rx_fifo->get_index;
  281. }
  282. else
  283. {
  284. return serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index);
  285. }
  286. }
  287. }
  288. #endif /* RT_USING_POSIX || RT_SERIAL_USING_DMA */
  289. #ifdef RT_SERIAL_USING_DMA
  290. /**
  291. * Calculate DMA received data length.
  292. *
  293. * @param serial serial device
  294. *
  295. * @return length
  296. */
  297. static rt_size_t rt_dma_calc_recved_len(struct rt_serial_device *serial)
  298. {
  299. return _serial_fifo_calc_recved_len(serial);
  300. }
  301. /**
  302. * Read data finish by DMA mode then update the get index for receive fifo.
  303. *
  304. * @param serial serial device
  305. * @param len get data length for this operate
  306. */
  307. static void rt_dma_recv_update_get_index(struct rt_serial_device *serial, rt_size_t len)
  308. {
  309. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  310. RT_ASSERT(rx_fifo != RT_NULL);
  311. RT_ASSERT(len <= rt_dma_calc_recved_len(serial));
  312. if (rx_fifo->is_full && len != 0) rx_fifo->is_full = RT_FALSE;
  313. rx_fifo->get_index += len;
  314. if (rx_fifo->get_index >= serial->config.bufsz)
  315. {
  316. rx_fifo->get_index %= serial->config.bufsz;
  317. }
  318. }
  319. /**
  320. * DMA received finish then update put index for receive fifo.
  321. *
  322. * @param serial serial device
  323. * @param len received length for this transmit
  324. */
  325. static void rt_dma_recv_update_put_index(struct rt_serial_device *serial, rt_size_t len)
  326. {
  327. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  328. RT_ASSERT(rx_fifo != RT_NULL);
  329. if (rx_fifo->get_index <= rx_fifo->put_index)
  330. {
  331. rx_fifo->put_index += len;
  332. /* beyond the fifo end */
  333. if (rx_fifo->put_index >= serial->config.bufsz)
  334. {
  335. rx_fifo->put_index %= serial->config.bufsz;
  336. /* force overwrite get index */
  337. if (rx_fifo->put_index >= rx_fifo->get_index)
  338. {
  339. rx_fifo->is_full = RT_TRUE;
  340. }
  341. }
  342. }
  343. else
  344. {
  345. rx_fifo->put_index += len;
  346. if (rx_fifo->put_index >= rx_fifo->get_index)
  347. {
  348. /* beyond the fifo end */
  349. if (rx_fifo->put_index >= serial->config.bufsz)
  350. {
  351. rx_fifo->put_index %= serial->config.bufsz;
  352. }
  353. /* force overwrite get index */
  354. rx_fifo->is_full = RT_TRUE;
  355. }
  356. }
  357. if(rx_fifo->is_full == RT_TRUE)
  358. {
  359. rx_fifo->get_index = rx_fifo->put_index;
  360. }
  361. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  362. }
  363. /*
  364. * Serial DMA routines
  365. */
  366. rt_inline int _serial_dma_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  367. {
  368. rt_base_t level;
  369. RT_ASSERT((serial != RT_NULL) && (data != RT_NULL));
  370. level = rt_hw_interrupt_disable();
  371. if (serial->config.bufsz == 0)
  372. {
  373. int result = RT_EOK;
  374. struct rt_serial_rx_dma *rx_dma;
  375. rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
  376. RT_ASSERT(rx_dma != RT_NULL);
  377. if (rx_dma->activated != RT_TRUE)
  378. {
  379. rx_dma->activated = RT_TRUE;
  380. RT_ASSERT(serial->ops->dma_transmit != RT_NULL);
  381. serial->ops->dma_transmit(serial, data, length, RT_SERIAL_DMA_RX);
  382. }
  383. else result = -RT_EBUSY;
  384. rt_hw_interrupt_enable(level);
  385. if (result == RT_EOK) return length;
  386. rt_set_errno(result);
  387. return 0;
  388. }
  389. else
  390. {
  391. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  392. rt_size_t recv_len = 0, fifo_recved_len = rt_dma_calc_recved_len(serial);
  393. RT_ASSERT(rx_fifo != RT_NULL);
  394. if (length < fifo_recved_len)
  395. recv_len = length;
  396. else
  397. recv_len = fifo_recved_len;
  398. if (rx_fifo->get_index + recv_len < serial->config.bufsz)
  399. rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index, recv_len);
  400. else
  401. {
  402. rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index,
  403. serial->config.bufsz - rx_fifo->get_index);
  404. rt_memcpy(data + serial->config.bufsz - rx_fifo->get_index, rx_fifo->buffer,
  405. recv_len + rx_fifo->get_index - serial->config.bufsz);
  406. }
  407. rt_dma_recv_update_get_index(serial, recv_len);
  408. rt_hw_interrupt_enable(level);
  409. return recv_len;
  410. }
  411. }
  412. rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  413. {
  414. rt_base_t level;
  415. rt_err_t result;
  416. struct rt_serial_tx_dma *tx_dma;
  417. tx_dma = (struct rt_serial_tx_dma*)(serial->serial_tx);
  418. result = rt_data_queue_push(&(tx_dma->data_queue), data, length, RT_WAITING_FOREVER);
  419. if (result == RT_EOK)
  420. {
  421. level = rt_hw_interrupt_disable();
  422. if (tx_dma->activated != RT_TRUE)
  423. {
  424. tx_dma->activated = RT_TRUE;
  425. rt_hw_interrupt_enable(level);
  426. /* make a DMA transfer */
  427. serial->ops->dma_transmit(serial, (rt_uint8_t *)data, length, RT_SERIAL_DMA_TX);
  428. }
  429. else
  430. {
  431. rt_hw_interrupt_enable(level);
  432. }
  433. return length;
  434. }
  435. else
  436. {
  437. rt_set_errno(result);
  438. return 0;
  439. }
  440. }
  441. #endif /* RT_SERIAL_USING_DMA */
  442. /* RT-Thread Device Interface */
  443. /*
  444. * This function initializes serial device.
  445. */
  446. static rt_err_t rt_serial_init(struct rt_device *dev)
  447. {
  448. rt_err_t result = RT_EOK;
  449. struct rt_serial_device *serial;
  450. RT_ASSERT(dev != RT_NULL);
  451. serial = (struct rt_serial_device *)dev;
  452. /* initialize rx/tx */
  453. serial->serial_rx = RT_NULL;
  454. serial->serial_tx = RT_NULL;
  455. /* apply configuration */
  456. if (serial->ops->configure)
  457. result = serial->ops->configure(serial, &serial->config);
  458. return result;
  459. }
  460. static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
  461. {
  462. rt_uint16_t stream_flag = 0;
  463. struct rt_serial_device *serial;
  464. RT_ASSERT(dev != RT_NULL);
  465. serial = (struct rt_serial_device *)dev;
  466. LOG_D("open serial device: 0x%08x with open flag: 0x%04x",
  467. dev, oflag);
  468. /* check device flag with the open flag */
  469. if ((oflag & RT_DEVICE_FLAG_DMA_RX) && !(dev->flag & RT_DEVICE_FLAG_DMA_RX))
  470. return -RT_EIO;
  471. if ((oflag & RT_DEVICE_FLAG_DMA_TX) && !(dev->flag & RT_DEVICE_FLAG_DMA_TX))
  472. return -RT_EIO;
  473. if ((oflag & RT_DEVICE_FLAG_INT_RX) && !(dev->flag & RT_DEVICE_FLAG_INT_RX))
  474. return -RT_EIO;
  475. if ((oflag & RT_DEVICE_FLAG_INT_TX) && !(dev->flag & RT_DEVICE_FLAG_INT_TX))
  476. return -RT_EIO;
  477. /* keep steam flag */
  478. if ((oflag & RT_DEVICE_FLAG_STREAM) || (dev->open_flag & RT_DEVICE_FLAG_STREAM))
  479. stream_flag = RT_DEVICE_FLAG_STREAM;
  480. /* get open flags */
  481. dev->open_flag = oflag & 0xff;
  482. /* initialize the Rx/Tx structure according to open flag */
  483. if (serial->serial_rx == RT_NULL)
  484. {
  485. if (oflag & RT_DEVICE_FLAG_INT_RX)
  486. {
  487. struct rt_serial_rx_fifo* rx_fifo;
  488. rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
  489. serial->config.bufsz);
  490. RT_ASSERT(rx_fifo != RT_NULL);
  491. rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
  492. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  493. rx_fifo->put_index = 0;
  494. rx_fifo->get_index = 0;
  495. rx_fifo->is_full = RT_FALSE;
  496. serial->serial_rx = rx_fifo;
  497. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  498. /* configure low level device */
  499. serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
  500. }
  501. #ifdef RT_SERIAL_USING_DMA
  502. else if (oflag & RT_DEVICE_FLAG_DMA_RX)
  503. {
  504. if (serial->config.bufsz == 0) {
  505. struct rt_serial_rx_dma* rx_dma;
  506. rx_dma = (struct rt_serial_rx_dma*) rt_malloc (sizeof(struct rt_serial_rx_dma));
  507. RT_ASSERT(rx_dma != RT_NULL);
  508. rx_dma->activated = RT_FALSE;
  509. serial->serial_rx = rx_dma;
  510. } else {
  511. struct rt_serial_rx_fifo* rx_fifo;
  512. rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
  513. serial->config.bufsz);
  514. RT_ASSERT(rx_fifo != RT_NULL);
  515. rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
  516. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  517. rx_fifo->put_index = 0;
  518. rx_fifo->get_index = 0;
  519. rx_fifo->is_full = RT_FALSE;
  520. serial->serial_rx = rx_fifo;
  521. /* configure fifo address and length to low level device */
  522. serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_DEVICE_FLAG_DMA_RX);
  523. }
  524. dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
  525. }
  526. #endif /* RT_SERIAL_USING_DMA */
  527. else
  528. {
  529. serial->serial_rx = RT_NULL;
  530. }
  531. }
  532. else
  533. {
  534. if (oflag & RT_DEVICE_FLAG_INT_RX)
  535. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  536. #ifdef RT_SERIAL_USING_DMA
  537. else if (oflag & RT_DEVICE_FLAG_DMA_RX)
  538. dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
  539. #endif /* RT_SERIAL_USING_DMA */
  540. }
  541. if (serial->serial_tx == RT_NULL)
  542. {
  543. if (oflag & RT_DEVICE_FLAG_INT_TX)
  544. {
  545. struct rt_serial_tx_fifo *tx_fifo;
  546. tx_fifo = (struct rt_serial_tx_fifo*) rt_malloc(sizeof(struct rt_serial_tx_fifo));
  547. RT_ASSERT(tx_fifo != RT_NULL);
  548. rt_completion_init(&(tx_fifo->completion));
  549. serial->serial_tx = tx_fifo;
  550. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  551. /* configure low level device */
  552. serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX);
  553. }
  554. #ifdef RT_SERIAL_USING_DMA
  555. else if (oflag & RT_DEVICE_FLAG_DMA_TX)
  556. {
  557. struct rt_serial_tx_dma* tx_dma;
  558. tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma));
  559. RT_ASSERT(tx_dma != RT_NULL);
  560. tx_dma->activated = RT_FALSE;
  561. rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL);
  562. serial->serial_tx = tx_dma;
  563. dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
  564. }
  565. #endif /* RT_SERIAL_USING_DMA */
  566. else
  567. {
  568. serial->serial_tx = RT_NULL;
  569. }
  570. }
  571. else
  572. {
  573. if (oflag & RT_DEVICE_FLAG_INT_TX)
  574. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  575. #ifdef RT_SERIAL_USING_DMA
  576. else if (oflag & RT_DEVICE_FLAG_DMA_TX)
  577. dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
  578. #endif /* RT_SERIAL_USING_DMA */
  579. }
  580. /* set stream flag */
  581. dev->open_flag |= stream_flag;
  582. return RT_EOK;
  583. }
  584. static rt_err_t rt_serial_close(struct rt_device *dev)
  585. {
  586. struct rt_serial_device *serial;
  587. RT_ASSERT(dev != RT_NULL);
  588. serial = (struct rt_serial_device *)dev;
  589. /* this device has more reference count */
  590. if (dev->ref_count > 1) return RT_EOK;
  591. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  592. {
  593. struct rt_serial_rx_fifo* rx_fifo;
  594. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  595. RT_ASSERT(rx_fifo != RT_NULL);
  596. rt_free(rx_fifo);
  597. serial->serial_rx = RT_NULL;
  598. dev->open_flag &= ~RT_DEVICE_FLAG_INT_RX;
  599. /* configure low level device */
  600. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_RX);
  601. }
  602. #ifdef RT_SERIAL_USING_DMA
  603. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
  604. {
  605. if (serial->config.bufsz == 0) {
  606. struct rt_serial_rx_dma* rx_dma;
  607. rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
  608. RT_ASSERT(rx_dma != RT_NULL);
  609. rt_free(rx_dma);
  610. } else {
  611. struct rt_serial_rx_fifo* rx_fifo;
  612. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  613. RT_ASSERT(rx_fifo != RT_NULL);
  614. rt_free(rx_fifo);
  615. }
  616. /* configure low level device */
  617. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *) RT_DEVICE_FLAG_DMA_RX);
  618. serial->serial_rx = RT_NULL;
  619. dev->open_flag &= ~RT_DEVICE_FLAG_DMA_RX;
  620. }
  621. #endif /* RT_SERIAL_USING_DMA */
  622. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  623. {
  624. struct rt_serial_tx_fifo* tx_fifo;
  625. tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
  626. RT_ASSERT(tx_fifo != RT_NULL);
  627. rt_free(tx_fifo);
  628. serial->serial_tx = RT_NULL;
  629. dev->open_flag &= ~RT_DEVICE_FLAG_INT_TX;
  630. /* configure low level device */
  631. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX);
  632. }
  633. #ifdef RT_SERIAL_USING_DMA
  634. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
  635. {
  636. struct rt_serial_tx_dma* tx_dma;
  637. tx_dma = (struct rt_serial_tx_dma*)serial->serial_tx;
  638. RT_ASSERT(tx_dma != RT_NULL);
  639. rt_free(tx_dma);
  640. serial->serial_tx = RT_NULL;
  641. dev->open_flag &= ~RT_DEVICE_FLAG_DMA_TX;
  642. }
  643. #endif /* RT_SERIAL_USING_DMA */
  644. return RT_EOK;
  645. }
  646. static rt_size_t rt_serial_read(struct rt_device *dev,
  647. rt_off_t pos,
  648. void *buffer,
  649. rt_size_t size)
  650. {
  651. struct rt_serial_device *serial;
  652. RT_ASSERT(dev != RT_NULL);
  653. if (size == 0) return 0;
  654. serial = (struct rt_serial_device *)dev;
  655. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  656. {
  657. return _serial_int_rx(serial, buffer, size);
  658. }
  659. #ifdef RT_SERIAL_USING_DMA
  660. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
  661. {
  662. return _serial_dma_rx(serial, buffer, size);
  663. }
  664. #endif /* RT_SERIAL_USING_DMA */
  665. return _serial_poll_rx(serial, buffer, size);
  666. }
  667. static rt_size_t rt_serial_write(struct rt_device *dev,
  668. rt_off_t pos,
  669. const void *buffer,
  670. rt_size_t size)
  671. {
  672. struct rt_serial_device *serial;
  673. RT_ASSERT(dev != RT_NULL);
  674. if (size == 0) return 0;
  675. serial = (struct rt_serial_device *)dev;
  676. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  677. {
  678. return _serial_int_tx(serial, buffer, size);
  679. }
  680. #ifdef RT_SERIAL_USING_DMA
  681. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
  682. {
  683. return _serial_dma_tx(serial, buffer, size);
  684. }
  685. #endif /* RT_SERIAL_USING_DMA */
  686. else
  687. {
  688. return _serial_poll_tx(serial, buffer, size);
  689. }
  690. }
  691. #ifdef RT_USING_POSIX_TERMIOS
  692. struct speed_baudrate_item
  693. {
  694. speed_t speed;
  695. int baudrate;
  696. };
  697. const static struct speed_baudrate_item _tbl[] =
  698. {
  699. {B2400, BAUD_RATE_2400},
  700. {B4800, BAUD_RATE_4800},
  701. {B9600, BAUD_RATE_9600},
  702. {B19200, BAUD_RATE_19200},
  703. {B38400, BAUD_RATE_38400},
  704. {B57600, BAUD_RATE_57600},
  705. {B115200, BAUD_RATE_115200},
  706. {B230400, BAUD_RATE_230400},
  707. {B460800, BAUD_RATE_460800},
  708. {B921600, BAUD_RATE_921600},
  709. {B2000000, BAUD_RATE_2000000},
  710. {B3000000, BAUD_RATE_3000000},
  711. };
  712. static speed_t _get_speed(int baudrate)
  713. {
  714. int index;
  715. for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
  716. {
  717. if (_tbl[index].baudrate == baudrate)
  718. return _tbl[index].speed;
  719. }
  720. return B0;
  721. }
  722. static int _get_baudrate(speed_t speed)
  723. {
  724. int index;
  725. for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
  726. {
  727. if (_tbl[index].speed == speed)
  728. return _tbl[index].baudrate;
  729. }
  730. return 0;
  731. }
  732. static void _tc_flush(struct rt_serial_device *serial, int queue)
  733. {
  734. int ch = -1;
  735. struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
  736. struct rt_device *device = RT_NULL;
  737. RT_ASSERT(serial != RT_NULL);
  738. device = &(serial->parent);
  739. rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  740. switch(queue)
  741. {
  742. case TCIFLUSH:
  743. case TCIOFLUSH:
  744. RT_ASSERT(rx_fifo != RT_NULL);
  745. if((device->open_flag & RT_DEVICE_FLAG_INT_RX) || (device->open_flag & RT_DEVICE_FLAG_DMA_RX))
  746. {
  747. RT_ASSERT(RT_NULL != rx_fifo);
  748. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  749. rx_fifo->put_index = 0;
  750. rx_fifo->get_index = 0;
  751. rx_fifo->is_full = RT_FALSE;
  752. }
  753. else
  754. {
  755. while (1)
  756. {
  757. ch = serial->ops->getc(serial);
  758. if (ch == -1) break;
  759. }
  760. }
  761. break;
  762. case TCOFLUSH:
  763. break;
  764. }
  765. }
  766. #endif
  767. static rt_err_t rt_serial_control(struct rt_device *dev,
  768. int cmd,
  769. void *args)
  770. {
  771. rt_err_t ret = RT_EOK;
  772. struct rt_serial_device *serial;
  773. RT_ASSERT(dev != RT_NULL);
  774. serial = (struct rt_serial_device *)dev;
  775. switch (cmd)
  776. {
  777. case RT_DEVICE_CTRL_SUSPEND:
  778. /* suspend device */
  779. dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
  780. break;
  781. case RT_DEVICE_CTRL_RESUME:
  782. /* resume device */
  783. dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
  784. break;
  785. case RT_DEVICE_CTRL_CONFIG:
  786. if (args)
  787. {
  788. struct serial_configure *pconfig = (struct serial_configure *) args;
  789. if (pconfig->bufsz != serial->config.bufsz && serial->parent.ref_count)
  790. {
  791. /*can not change buffer size*/
  792. return RT_EBUSY;
  793. }
  794. /* set serial configure */
  795. serial->config = *pconfig;
  796. if (serial->parent.ref_count)
  797. {
  798. /* serial device has been opened, to configure it */
  799. serial->ops->configure(serial, (struct serial_configure *) args);
  800. }
  801. }
  802. break;
  803. #ifdef RT_USING_POSIX_TERMIOS
  804. case TCGETA:
  805. {
  806. struct termios *tio = (struct termios*)args;
  807. if (tio == RT_NULL) return -RT_EINVAL;
  808. tio->c_iflag = 0;
  809. tio->c_oflag = 0;
  810. tio->c_lflag = 0;
  811. /* update oflag for console device */
  812. if (rt_console_get_device() == dev)
  813. tio->c_oflag = OPOST | ONLCR;
  814. /* set cflag */
  815. tio->c_cflag = 0;
  816. if (serial->config.data_bits == DATA_BITS_5)
  817. tio->c_cflag = CS5;
  818. else if (serial->config.data_bits == DATA_BITS_6)
  819. tio->c_cflag = CS6;
  820. else if (serial->config.data_bits == DATA_BITS_7)
  821. tio->c_cflag = CS7;
  822. else if (serial->config.data_bits == DATA_BITS_8)
  823. tio->c_cflag = CS8;
  824. if (serial->config.stop_bits == STOP_BITS_2)
  825. tio->c_cflag |= CSTOPB;
  826. if (serial->config.parity == PARITY_EVEN)
  827. tio->c_cflag |= PARENB;
  828. else if (serial->config.parity == PARITY_ODD)
  829. tio->c_cflag |= (PARODD | PARENB);
  830. cfsetospeed(tio, _get_speed(serial->config.baud_rate));
  831. }
  832. break;
  833. case TCSETAW:
  834. case TCSETAF:
  835. case TCSETA:
  836. {
  837. int baudrate;
  838. struct serial_configure config;
  839. struct termios *tio = (struct termios*)args;
  840. if (tio == RT_NULL) return -RT_EINVAL;
  841. config = serial->config;
  842. baudrate = _get_baudrate(cfgetospeed(tio));
  843. config.baud_rate = baudrate;
  844. switch (tio->c_cflag & CSIZE)
  845. {
  846. case CS5:
  847. config.data_bits = DATA_BITS_5;
  848. break;
  849. case CS6:
  850. config.data_bits = DATA_BITS_6;
  851. break;
  852. case CS7:
  853. config.data_bits = DATA_BITS_7;
  854. break;
  855. default:
  856. config.data_bits = DATA_BITS_8;
  857. break;
  858. }
  859. if (tio->c_cflag & CSTOPB) config.stop_bits = STOP_BITS_2;
  860. else config.stop_bits = STOP_BITS_1;
  861. if (tio->c_cflag & PARENB)
  862. {
  863. if (tio->c_cflag & PARODD) config.parity = PARITY_ODD;
  864. else config.parity = PARITY_EVEN;
  865. }
  866. else config.parity = PARITY_NONE;
  867. serial->ops->configure(serial, &config);
  868. }
  869. break;
  870. case TCFLSH:
  871. {
  872. int queue = (int)args;
  873. _tc_flush(serial, queue);
  874. }
  875. break;
  876. case TCXONC:
  877. break;
  878. #endif
  879. #ifdef RT_USING_POSIX
  880. case FIONREAD:
  881. {
  882. rt_size_t recved = 0;
  883. rt_base_t level;
  884. level = rt_hw_interrupt_disable();
  885. recved = _serial_fifo_calc_recved_len(serial);
  886. rt_hw_interrupt_enable(level);
  887. *(rt_size_t *)args = recved;
  888. }
  889. break;
  890. #endif
  891. default :
  892. /* control device */
  893. ret = serial->ops->control(serial, cmd, args);
  894. break;
  895. }
  896. return ret;
  897. }
  898. #ifdef RT_USING_DEVICE_OPS
  899. const static struct rt_device_ops serial_ops =
  900. {
  901. rt_serial_init,
  902. rt_serial_open,
  903. rt_serial_close,
  904. rt_serial_read,
  905. rt_serial_write,
  906. rt_serial_control
  907. };
  908. #endif
  909. /*
  910. * serial register
  911. */
  912. rt_err_t rt_hw_serial_register(struct rt_serial_device *serial,
  913. const char *name,
  914. rt_uint32_t flag,
  915. void *data)
  916. {
  917. rt_err_t ret;
  918. struct rt_device *device;
  919. RT_ASSERT(serial != RT_NULL);
  920. device = &(serial->parent);
  921. device->type = RT_Device_Class_Char;
  922. device->rx_indicate = RT_NULL;
  923. device->tx_complete = RT_NULL;
  924. #ifdef RT_USING_DEVICE_OPS
  925. device->ops = &serial_ops;
  926. #else
  927. device->init = rt_serial_init;
  928. device->open = rt_serial_open;
  929. device->close = rt_serial_close;
  930. device->read = rt_serial_read;
  931. device->write = rt_serial_write;
  932. device->control = rt_serial_control;
  933. #endif
  934. device->user_data = data;
  935. /* register a character device */
  936. ret = rt_device_register(device, name, flag);
  937. #if defined(RT_USING_POSIX)
  938. /* set fops */
  939. device->fops = &_serial_fops;
  940. #endif
  941. return ret;
  942. }
  943. /* ISR for serial interrupt */
  944. void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
  945. {
  946. switch (event & 0xff)
  947. {
  948. case RT_SERIAL_EVENT_RX_IND:
  949. {
  950. int ch = -1;
  951. rt_base_t level;
  952. struct rt_serial_rx_fifo* rx_fifo;
  953. /* interrupt mode receive */
  954. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  955. RT_ASSERT(rx_fifo != RT_NULL);
  956. while (1)
  957. {
  958. ch = serial->ops->getc(serial);
  959. if (ch == -1) break;
  960. /* disable interrupt */
  961. level = rt_hw_interrupt_disable();
  962. rx_fifo->buffer[rx_fifo->put_index] = ch;
  963. rx_fifo->put_index += 1;
  964. if (rx_fifo->put_index >= serial->config.bufsz) rx_fifo->put_index = 0;
  965. /* if the next position is read index, discard this 'read char' */
  966. if (rx_fifo->put_index == rx_fifo->get_index)
  967. {
  968. rx_fifo->get_index += 1;
  969. rx_fifo->is_full = RT_TRUE;
  970. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  971. }
  972. /* enable interrupt */
  973. rt_hw_interrupt_enable(level);
  974. }
  975. /* invoke callback */
  976. if (serial->parent.rx_indicate != RT_NULL)
  977. {
  978. rt_size_t rx_length;
  979. /* get rx length */
  980. level = rt_hw_interrupt_disable();
  981. rx_length = (rx_fifo->put_index >= rx_fifo->get_index)? (rx_fifo->put_index - rx_fifo->get_index):
  982. (serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index));
  983. rt_hw_interrupt_enable(level);
  984. if (rx_length)
  985. {
  986. serial->parent.rx_indicate(&serial->parent, rx_length);
  987. }
  988. }
  989. break;
  990. }
  991. case RT_SERIAL_EVENT_TX_DONE:
  992. {
  993. struct rt_serial_tx_fifo* tx_fifo;
  994. tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
  995. rt_completion_done(&(tx_fifo->completion));
  996. break;
  997. }
  998. #ifdef RT_SERIAL_USING_DMA
  999. case RT_SERIAL_EVENT_TX_DMADONE:
  1000. {
  1001. const void *data_ptr;
  1002. rt_size_t data_size;
  1003. const void *last_data_ptr;
  1004. struct rt_serial_tx_dma *tx_dma;
  1005. tx_dma = (struct rt_serial_tx_dma*) serial->serial_tx;
  1006. rt_data_queue_pop(&(tx_dma->data_queue), &last_data_ptr, &data_size, 0);
  1007. if (rt_data_queue_peak(&(tx_dma->data_queue), &data_ptr, &data_size) == RT_EOK)
  1008. {
  1009. /* transmit next data node */
  1010. tx_dma->activated = RT_TRUE;
  1011. serial->ops->dma_transmit(serial, (rt_uint8_t *)data_ptr, data_size, RT_SERIAL_DMA_TX);
  1012. }
  1013. else
  1014. {
  1015. tx_dma->activated = RT_FALSE;
  1016. }
  1017. /* invoke callback */
  1018. if (serial->parent.tx_complete != RT_NULL)
  1019. {
  1020. serial->parent.tx_complete(&serial->parent, (void*)last_data_ptr);
  1021. }
  1022. break;
  1023. }
  1024. case RT_SERIAL_EVENT_RX_DMADONE:
  1025. {
  1026. int length;
  1027. rt_base_t level;
  1028. /* get DMA rx length */
  1029. length = (event & (~0xff)) >> 8;
  1030. if (serial->config.bufsz == 0)
  1031. {
  1032. struct rt_serial_rx_dma* rx_dma;
  1033. rx_dma = (struct rt_serial_rx_dma*) serial->serial_rx;
  1034. RT_ASSERT(rx_dma != RT_NULL);
  1035. RT_ASSERT(serial->parent.rx_indicate != RT_NULL);
  1036. serial->parent.rx_indicate(&(serial->parent), length);
  1037. rx_dma->activated = RT_FALSE;
  1038. }
  1039. else
  1040. {
  1041. /* disable interrupt */
  1042. level = rt_hw_interrupt_disable();
  1043. /* update fifo put index */
  1044. rt_dma_recv_update_put_index(serial, length);
  1045. /* calculate received total length */
  1046. length = rt_dma_calc_recved_len(serial);
  1047. /* enable interrupt */
  1048. rt_hw_interrupt_enable(level);
  1049. /* invoke callback */
  1050. if (serial->parent.rx_indicate != RT_NULL)
  1051. {
  1052. serial->parent.rx_indicate(&(serial->parent), length);
  1053. }
  1054. }
  1055. break;
  1056. }
  1057. #endif /* RT_SERIAL_USING_DMA */
  1058. }
  1059. }