sensor.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2020-02-22 luhuadong support custom commands
  10. */
  11. #include "sensor.h"
  12. #define DBG_TAG "sensor"
  13. #define DBG_LVL DBG_INFO
  14. #include <rtdbg.h>
  15. #include <string.h>
  16. static char *const sensor_name_str[] =
  17. {
  18. "none",
  19. "acce_", /* Accelerometer */
  20. "gyro_", /* Gyroscope */
  21. "mag_", /* Magnetometer */
  22. "temp_", /* Temperature */
  23. "humi_", /* Relative Humidity */
  24. "baro_", /* Barometer */
  25. "li_", /* Ambient light */
  26. "pr_", /* Proximity */
  27. "hr_", /* Heart Rate */
  28. "tvoc_", /* TVOC Level */
  29. "noi_", /* Noise Loudness */
  30. "step_", /* Step sensor */
  31. "forc_", /* Force sensor */
  32. "dust_", /* Dust sensor */
  33. "eco2_", /* eCO2 sensor */
  34. "gnss_", /* GPS/GNSS sensor */
  35. "tof_", /* TOF sensor */
  36. "spo2_", /* SpO2 sensor */
  37. "iaq_", /* IAQ sensor */
  38. "etoh_", /* EtOH sensor */
  39. };
  40. /* Sensor interrupt correlation function */
  41. /*
  42. * Sensor interrupt handler function
  43. */
  44. void rt_sensor_cb(rt_sensor_t sen)
  45. {
  46. if (sen->parent.rx_indicate == RT_NULL)
  47. {
  48. return;
  49. }
  50. if (sen->irq_handle != RT_NULL)
  51. {
  52. sen->irq_handle(sen);
  53. }
  54. /* The buffer is not empty. Read the data in the buffer first */
  55. if (sen->data_len > 0)
  56. {
  57. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  58. }
  59. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  60. {
  61. /* The interrupt mode only produces one data at a time */
  62. sen->parent.rx_indicate(&sen->parent, 1);
  63. }
  64. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  65. {
  66. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  67. }
  68. }
  69. /* ISR for sensor interrupt */
  70. static void irq_callback(void *args)
  71. {
  72. rt_sensor_t sensor = (rt_sensor_t)args;
  73. rt_uint8_t i;
  74. if (sensor->module)
  75. {
  76. /* Invoke a callback for all sensors in the module */
  77. for (i = 0; i < sensor->module->sen_num; i++)
  78. {
  79. rt_sensor_cb(sensor->module->sen[i]);
  80. }
  81. }
  82. else
  83. {
  84. rt_sensor_cb(sensor);
  85. }
  86. }
  87. /* Sensor interrupt initialization function */
  88. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  89. {
  90. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  91. {
  92. return -RT_EINVAL;
  93. }
  94. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  95. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  96. {
  97. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  98. }
  99. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  100. {
  101. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  102. }
  103. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  104. {
  105. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  106. }
  107. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  108. LOG_I("interrupt init success");
  109. return 0;
  110. }
  111. // local rt_sensor_ops
  112. static rt_size_t local_fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len)
  113. {
  114. LOG_D("Undefined fetch_data");
  115. return 0;
  116. }
  117. static rt_err_t local_control(struct rt_sensor_device *sensor, int cmd, void *arg)
  118. {
  119. LOG_D("Undefined control");
  120. return RT_ERROR;
  121. }
  122. static struct rt_sensor_ops local_ops =
  123. {
  124. .fetch_data = local_fetch_data,
  125. .control = local_control
  126. };
  127. /* RT-Thread Device Interface */
  128. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  129. {
  130. rt_sensor_t sensor = (rt_sensor_t)dev;
  131. RT_ASSERT(dev != RT_NULL);
  132. rt_err_t res = RT_EOK;
  133. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  134. if (sensor->module)
  135. {
  136. /* take the module mutex */
  137. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  138. }
  139. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  140. {
  141. /* Allocate memory for the sensor buffer */
  142. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  143. if (sensor->data_buf == RT_NULL)
  144. {
  145. res = -RT_ENOMEM;
  146. goto __exit;
  147. }
  148. }
  149. if (sensor->ops->control != RT_NULL)
  150. {
  151. local_ctrl = sensor->ops->control;
  152. }
  153. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  154. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  155. {
  156. /* If polling mode is supported, configure it to polling mode */
  157. local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
  158. }
  159. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  160. {
  161. /* If interrupt mode is supported, configure it to interrupt mode */
  162. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  163. {
  164. /* Initialization sensor interrupt */
  165. rt_sensor_irq_init(sensor);
  166. sensor->config.mode = RT_SENSOR_MODE_INT;
  167. }
  168. }
  169. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  170. {
  171. /* If fifo mode is supported, configure it to fifo mode */
  172. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  173. {
  174. /* Initialization sensor interrupt */
  175. rt_sensor_irq_init(sensor);
  176. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  177. }
  178. }
  179. else
  180. {
  181. res = -RT_EINVAL;
  182. goto __exit;
  183. }
  184. /* Configure power mode to normal mode */
  185. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  186. {
  187. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  188. }
  189. __exit:
  190. if (sensor->module)
  191. {
  192. /* release the module mutex */
  193. rt_mutex_release(sensor->module->lock);
  194. }
  195. return res;
  196. }
  197. static rt_err_t rt_sensor_close(rt_device_t dev)
  198. {
  199. rt_sensor_t sensor = (rt_sensor_t)dev;
  200. int i;
  201. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  202. RT_ASSERT(dev != RT_NULL);
  203. if (sensor->module)
  204. {
  205. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  206. }
  207. if (sensor->ops->control != RT_NULL)
  208. {
  209. local_ctrl = sensor->ops->control;
  210. }
  211. /* Configure power mode to power down mode */
  212. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  213. {
  214. sensor->config.power = RT_SENSOR_POWER_DOWN;
  215. }
  216. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
  217. {
  218. for (i = 0; i < sensor->module->sen_num; i ++)
  219. {
  220. if (sensor->module->sen[i]->parent.ref_count > 0)
  221. goto __exit;
  222. }
  223. /* Free memory for the sensor buffer */
  224. for (i = 0; i < sensor->module->sen_num; i ++)
  225. {
  226. if (sensor->module->sen[i]->data_buf != RT_NULL)
  227. {
  228. rt_free(sensor->module->sen[i]->data_buf);
  229. sensor->module->sen[i]->data_buf = RT_NULL;
  230. }
  231. }
  232. }
  233. if (sensor->config.mode != RT_SENSOR_MODE_POLLING)
  234. {
  235. /* Sensor disable interrupt */
  236. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  237. {
  238. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  239. }
  240. }
  241. __exit:
  242. if (sensor->module)
  243. {
  244. rt_mutex_release(sensor->module->lock);
  245. }
  246. return RT_EOK;
  247. }
  248. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  249. {
  250. rt_sensor_t sensor = (rt_sensor_t)dev;
  251. rt_size_t result = 0;
  252. RT_ASSERT(dev != RT_NULL);
  253. if (buf == NULL || len == 0)
  254. {
  255. return 0;
  256. }
  257. if (sensor->module)
  258. {
  259. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  260. }
  261. /* The buffer is not empty. Read the data in the buffer first */
  262. if (sensor->data_len > 0)
  263. {
  264. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  265. {
  266. len = sensor->data_len / sizeof(struct rt_sensor_data);
  267. }
  268. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  269. /* Clear the buffer */
  270. sensor->data_len = 0;
  271. result = len;
  272. }
  273. else
  274. {
  275. /* If the buffer is empty read the data */
  276. if (sensor->ops->fetch_data != RT_NULL)
  277. {
  278. result = sensor->ops->fetch_data(sensor, buf, len);
  279. }
  280. }
  281. if (sensor->module)
  282. {
  283. rt_mutex_release(sensor->module->lock);
  284. }
  285. return result;
  286. }
  287. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  288. {
  289. rt_sensor_t sensor = (rt_sensor_t)dev;
  290. rt_err_t result = RT_EOK;
  291. RT_ASSERT(dev != RT_NULL);
  292. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  293. if (sensor->module)
  294. {
  295. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  296. }
  297. if (sensor->ops->control != RT_NULL)
  298. {
  299. local_ctrl = sensor->ops->control;
  300. }
  301. switch (cmd)
  302. {
  303. case RT_SENSOR_CTRL_GET_ID:
  304. if (args)
  305. {
  306. result = local_ctrl(sensor, RT_SENSOR_CTRL_GET_ID, args);
  307. }
  308. break;
  309. case RT_SENSOR_CTRL_GET_INFO:
  310. if (args)
  311. {
  312. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  313. }
  314. break;
  315. case RT_SENSOR_CTRL_SET_RANGE:
  316. /* Configuration measurement range */
  317. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  318. if (result == RT_EOK)
  319. {
  320. sensor->config.range = (rt_int32_t)args;
  321. LOG_D("set range %d", sensor->config.range);
  322. }
  323. break;
  324. case RT_SENSOR_CTRL_SET_ODR:
  325. /* Configuration data output rate */
  326. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  327. if (result == RT_EOK)
  328. {
  329. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  330. LOG_D("set odr %d", sensor->config.odr);
  331. }
  332. break;
  333. case RT_SENSOR_CTRL_SET_POWER:
  334. /* Configuration sensor power mode */
  335. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  336. if (result == RT_EOK)
  337. {
  338. sensor->config.power = (rt_uint32_t)args & 0xFF;
  339. LOG_D("set power mode code:", sensor->config.power);
  340. }
  341. break;
  342. case RT_SENSOR_CTRL_SELF_TEST:
  343. /* Device self-test */
  344. result = local_ctrl(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  345. break;
  346. default:
  347. if (cmd > RT_SENSOR_CTRL_USER_CMD_START)
  348. {
  349. /* Custom commands */
  350. result = local_ctrl(sensor, cmd, args);
  351. }
  352. else
  353. {
  354. result = -RT_ERROR;
  355. }
  356. break;
  357. }
  358. if (sensor->module)
  359. {
  360. rt_mutex_release(sensor->module->lock);
  361. }
  362. return result;
  363. }
  364. #ifdef RT_USING_DEVICE_OPS
  365. const static struct rt_device_ops rt_sensor_ops =
  366. {
  367. RT_NULL,
  368. rt_sensor_open,
  369. rt_sensor_close,
  370. rt_sensor_read,
  371. RT_NULL,
  372. rt_sensor_control
  373. };
  374. #endif
  375. /*
  376. * sensor register
  377. */
  378. int rt_hw_sensor_register(rt_sensor_t sensor,
  379. const char *name,
  380. rt_uint32_t flag,
  381. void *data)
  382. {
  383. rt_int8_t result;
  384. rt_device_t device;
  385. RT_ASSERT(sensor != RT_NULL);
  386. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  387. if (sensor->ops == RT_NULL)
  388. {
  389. sensor->ops = &local_ops;
  390. }
  391. /* Add a type name for the sensor device */
  392. sensor_name = sensor_name_str[sensor->info.type];
  393. device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  394. if (device_name == RT_NULL)
  395. {
  396. LOG_E("device_name calloc failed!");
  397. return -RT_ERROR;
  398. }
  399. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  400. strcat(device_name, name);
  401. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  402. {
  403. /* Create a mutex lock for the module */
  404. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  405. if (sensor->module->lock == RT_NULL)
  406. {
  407. rt_free(device_name);
  408. return -RT_ERROR;
  409. }
  410. }
  411. device = &sensor->parent;
  412. #ifdef RT_USING_DEVICE_OPS
  413. device->ops = &rt_sensor_ops;
  414. #else
  415. device->init = RT_NULL;
  416. device->open = rt_sensor_open;
  417. device->close = rt_sensor_close;
  418. device->read = rt_sensor_read;
  419. device->write = RT_NULL;
  420. device->control = rt_sensor_control;
  421. #endif
  422. device->type = RT_Device_Class_Sensor;
  423. device->rx_indicate = RT_NULL;
  424. device->tx_complete = RT_NULL;
  425. device->user_data = data;
  426. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  427. if (result != RT_EOK)
  428. {
  429. LOG_E("rt_sensor[%s] register err code: %d", device_name, result);
  430. rt_free(device_name);
  431. return result;
  432. }
  433. rt_free(device_name);
  434. LOG_I("rt_sensor[%s] init success", device_name);
  435. return RT_EOK;
  436. }