block_dev.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /*
  2. * File : block_dev.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2011-07-25 weety first version
  13. */
  14. #include <rtthread.h>
  15. #include <dfs_fs.h>
  16. #include <drivers/mmcsd_core.h>
  17. static rt_list_t blk_devices;
  18. struct mmcsd_blk_device
  19. {
  20. struct rt_mmcsd_card *card;
  21. rt_list_t list;
  22. struct rt_device dev;
  23. struct dfs_partition part;
  24. struct rt_device_blk_geometry geometry;
  25. };
  26. #ifndef RT_MMCSD_MAX_PARTITION
  27. #define RT_MMCSD_MAX_PARTITION 16
  28. #endif
  29. static rt_int32_t mmcsd_num_wr_blocks(struct rt_mmcsd_card *card)
  30. {
  31. rt_int32_t err;
  32. rt_uint32_t blocks;
  33. struct rt_mmcsd_req req;
  34. struct rt_mmcsd_cmd cmd;
  35. struct rt_mmcsd_data data;
  36. rt_uint32_t timeout_us;
  37. rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
  38. cmd.cmd_code = APP_CMD;
  39. cmd.arg = card->rca << 16;
  40. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
  41. err = mmcsd_send_cmd(card->host, &cmd, 0);
  42. if (err)
  43. return -RT_ERROR;
  44. if (!controller_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
  45. return -RT_ERROR;
  46. rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
  47. cmd.cmd_code = SD_APP_SEND_NUM_WR_BLKS;
  48. cmd.arg = 0;
  49. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
  50. rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
  51. data.timeout_ns = card->tacc_ns * 100;
  52. data.timeout_clks = card->tacc_clks * 100;
  53. timeout_us = data.timeout_ns / 1000;
  54. timeout_us += data.timeout_clks * 1000 /
  55. (card->host->io_cfg.clock / 1000);
  56. if (timeout_us > 100000)
  57. {
  58. data.timeout_ns = 100000000;
  59. data.timeout_clks = 0;
  60. }
  61. data.blksize = 4;
  62. data.blks = 1;
  63. data.flags = DATA_DIR_READ;
  64. data.buf = &blocks;
  65. rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
  66. req.cmd = &cmd;
  67. req.data = &data;
  68. mmcsd_send_request(card->host, &req);
  69. if (cmd.err || data.err)
  70. return -RT_ERROR;
  71. return blocks;
  72. }
  73. static rt_err_t rt_mmcsd_req_blk(struct rt_mmcsd_card *card, rt_uint32_t sector, void *buf, rt_size_t blks, rt_uint8_t dir)
  74. {
  75. void *aligned_buf;
  76. struct rt_mmcsd_cmd cmd, stop;
  77. struct rt_mmcsd_data data;
  78. struct rt_mmcsd_req req;
  79. struct rt_mmcsd_host *host = card->host;
  80. rt_uint32_t r_cmd, w_cmd;
  81. mmcsd_host_lock(host);
  82. rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
  83. rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
  84. rt_memset(&stop, 0, sizeof(struct rt_mmcsd_cmd));
  85. rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
  86. req.cmd = &cmd;
  87. req.data = &data;
  88. cmd.arg = sector;
  89. if (!(card->flags & CARD_FLAG_SDHC))
  90. {
  91. cmd.arg <<= 9;
  92. }
  93. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
  94. data.blksize = SECTOR_SIZE;
  95. data.blks = blks;
  96. if (blks > 1)
  97. {
  98. if (!controller_is_spi(card->host) || !dir)
  99. {
  100. req.stop = &stop;
  101. stop.cmd_code = STOP_TRANSMISSION;
  102. stop.arg = 0;
  103. stop.flags = RESP_SPI_R1B | RESP_R1B | CMD_AC;
  104. }
  105. r_cmd = READ_MULTIPLE_BLOCK;
  106. w_cmd = WRITE_MULTIPLE_BLOCK;
  107. }
  108. else
  109. {
  110. req.stop = NULL;
  111. r_cmd = READ_SINGLE_BLOCK;
  112. w_cmd = WRITE_BLOCK;
  113. }
  114. if (!dir)
  115. {
  116. cmd.cmd_code = r_cmd;
  117. data.flags |= DATA_DIR_READ;
  118. }
  119. else
  120. {
  121. cmd.cmd_code = w_cmd;
  122. data.flags |= DATA_DIR_WRITE;
  123. }
  124. mmcsd_set_data_timeout(&data, card);
  125. data.buf = buf;
  126. mmcsd_send_request(host, &req);
  127. if (!controller_is_spi(card->host) && dir != 0)
  128. {
  129. do
  130. {
  131. rt_int32_t err;
  132. cmd.cmd_code = SEND_STATUS;
  133. cmd.arg = card->rca << 16;
  134. cmd.flags = RESP_R1 | CMD_AC;
  135. err = mmcsd_send_cmd(card->host, &cmd, 5);
  136. if (err)
  137. {
  138. rt_kprintf("error %d requesting status\n", err);
  139. break;
  140. }
  141. /*
  142. * Some cards mishandle the status bits,
  143. * so make sure to check both the busy
  144. * indication and the card state.
  145. */
  146. } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
  147. (R1_CURRENT_STATE(cmd.resp[0]) == 7));
  148. }
  149. mmcsd_host_unlock(host);
  150. if (cmd.err || data.err || stop.err)
  151. {
  152. rt_kprintf("mmcsd request blocks error\n");
  153. rt_kprintf("%d,%d,%d, 0x%08x,0x%08x\n", cmd.err, data.err, stop.err, data.flags, sector);
  154. return -RT_ERROR;
  155. }
  156. return RT_EOK;
  157. }
  158. static rt_err_t rt_mmcsd_init(rt_device_t dev)
  159. {
  160. return RT_EOK;
  161. }
  162. static rt_err_t rt_mmcsd_open(rt_device_t dev, rt_uint16_t oflag)
  163. {
  164. return RT_EOK;
  165. }
  166. static rt_err_t rt_mmcsd_close(rt_device_t dev)
  167. {
  168. return RT_EOK;
  169. }
  170. static rt_err_t rt_mmcsd_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  171. {
  172. struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
  173. switch (cmd)
  174. {
  175. case RT_DEVICE_CTRL_BLK_GETGEOME:
  176. rt_memcpy(args, &blk_dev->geometry, sizeof(struct rt_device_blk_geometry));
  177. break;
  178. default:
  179. break;
  180. }
  181. return RT_EOK;
  182. }
  183. static rt_size_t rt_mmcsd_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  184. {
  185. rt_err_t err;
  186. struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
  187. struct dfs_partition *part = &blk_dev->part;
  188. if (dev == RT_NULL)
  189. {
  190. rt_set_errno(-DFS_STATUS_EINVAL);
  191. return 0;
  192. }
  193. rt_sem_take(part->lock, RT_WAITING_FOREVER);
  194. err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, buffer, size, 0);
  195. rt_sem_release(part->lock);
  196. /* the length of reading must align to SECTOR SIZE */
  197. if (err)
  198. {
  199. rt_set_errno(-DFS_STATUS_EIO);
  200. return 0;
  201. }
  202. return size;
  203. }
  204. static rt_size_t rt_mmcsd_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  205. {
  206. rt_err_t err;
  207. struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
  208. struct dfs_partition *part = &blk_dev->part;
  209. if (dev == RT_NULL)
  210. {
  211. rt_set_errno(-DFS_STATUS_EINVAL);
  212. return 0;
  213. }
  214. rt_sem_take(part->lock, RT_WAITING_FOREVER);
  215. err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, (void *)buffer, size, 1);
  216. rt_sem_release(part->lock);
  217. /* the length of reading must align to SECTOR SIZE */
  218. if (err)
  219. {
  220. rt_set_errno(-DFS_STATUS_EIO);
  221. return 0;
  222. }
  223. return size;
  224. }
  225. static rt_int32_t mmcsd_set_blksize(struct rt_mmcsd_card *card)
  226. {
  227. struct rt_mmcsd_cmd cmd;
  228. int err;
  229. /* Block-addressed cards ignore MMC_SET_BLOCKLEN. */
  230. if (card->flags & CARD_FLAG_SDHC)
  231. return 0;
  232. mmcsd_host_lock(card->host);
  233. cmd.cmd_code = SET_BLOCKLEN;
  234. cmd.arg = 512;
  235. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
  236. err = mmcsd_send_cmd(card->host, &cmd, 5);
  237. mmcsd_host_unlock(card->host);
  238. if (err)
  239. {
  240. rt_kprintf("MMCSD: unable to set block size to %d: %d\n", cmd.arg, err);
  241. return -RT_ERROR;
  242. }
  243. return 0;
  244. }
  245. rt_int32_t rt_mmcsd_blk_probe(struct rt_mmcsd_card *card)
  246. {
  247. rt_int32_t err = 0;
  248. rt_uint8_t i, status;
  249. rt_uint8_t *sector;
  250. char dname[4];
  251. char sname[8];
  252. struct mmcsd_blk_device *blk_dev = RT_NULL;
  253. err = mmcsd_set_blksize(card);
  254. if(err)
  255. {
  256. return err;
  257. }
  258. /* get the first sector to read partition table */
  259. sector = (rt_uint8_t *) rt_malloc(SECTOR_SIZE);
  260. if (sector == RT_NULL)
  261. {
  262. rt_kprintf("allocate partition sector buffer failed\n");
  263. return -RT_ENOMEM;
  264. }
  265. status = rt_mmcsd_req_blk(card, 0, sector, 1, 0);
  266. if (status == RT_EOK)
  267. {
  268. for(i=0; i < RT_MMCSD_MAX_PARTITION; i++)
  269. {
  270. blk_dev = rt_malloc(sizeof(struct mmcsd_blk_device));
  271. if (!blk_dev)
  272. {
  273. rt_kprintf("mmcsd:malloc mem failde\n");
  274. break;
  275. }
  276. rt_memset((void *)blk_dev, 0, sizeof(struct mmcsd_blk_device));
  277. /* get the first partition */
  278. status = dfs_filesystem_get_partition(&blk_dev->part, sector, i);
  279. if (status == RT_EOK)
  280. {
  281. rt_snprintf(dname, 4, "sd%d", i);
  282. rt_snprintf(sname, 8, "sem_sd%d", i);
  283. blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
  284. /* register mmcsd device */
  285. blk_dev->dev.type = RT_Device_Class_Block;
  286. blk_dev->dev.init = rt_mmcsd_init;
  287. blk_dev->dev.open = rt_mmcsd_open;
  288. blk_dev->dev.close = rt_mmcsd_close;
  289. blk_dev->dev.read = rt_mmcsd_read;
  290. blk_dev->dev.write = rt_mmcsd_write;
  291. blk_dev->dev.control = rt_mmcsd_control;
  292. blk_dev->dev.user_data = blk_dev;
  293. blk_dev->card = card;
  294. blk_dev->geometry.bytes_per_sector = 1<<9;
  295. blk_dev->geometry.block_size = card->card_blksize;
  296. blk_dev->geometry.sector_count = blk_dev->part.size;
  297. rt_device_register(&blk_dev->dev, dname,
  298. RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
  299. rt_list_insert_after(&blk_devices, &blk_dev->list);
  300. }
  301. else
  302. {
  303. if(i == 0)
  304. {
  305. /* there is no partition table */
  306. blk_dev->part.offset = 0;
  307. blk_dev->part.size = 0;
  308. blk_dev->part.lock = rt_sem_create("sem_sd0", 1, RT_IPC_FLAG_FIFO);
  309. /* register mmcsd device */
  310. blk_dev->dev.type = RT_Device_Class_Block;
  311. blk_dev->dev.init = rt_mmcsd_init;
  312. blk_dev->dev.open = rt_mmcsd_open;
  313. blk_dev->dev.close = rt_mmcsd_close;
  314. blk_dev->dev.read = rt_mmcsd_read;
  315. blk_dev->dev.write = rt_mmcsd_write;
  316. blk_dev->dev.control = rt_mmcsd_control;
  317. blk_dev->dev.user_data = blk_dev;
  318. blk_dev->card = card;
  319. blk_dev->geometry.bytes_per_sector = 1<<9;
  320. blk_dev->geometry.block_size = card->card_blksize;
  321. if (card->flags & CARD_FLAG_SDHC)
  322. {
  323. blk_dev->geometry.sector_count = (card->csd.c_size + 1) * 1024;
  324. }
  325. else
  326. {
  327. blk_dev->geometry.sector_count =
  328. card->card_capacity * 1024 / 512;
  329. }
  330. rt_device_register(&blk_dev->dev, "sd0",
  331. RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
  332. rt_list_insert_after(&blk_devices, &blk_dev->list);
  333. break;
  334. }
  335. else
  336. {
  337. rt_free(blk_dev);
  338. blk_dev = RT_NULL;
  339. break;
  340. }
  341. }
  342. }
  343. }
  344. else
  345. {
  346. rt_kprintf("read mmcsd first sector failed\n");
  347. err = -RT_ERROR;
  348. }
  349. /* release sector buffer */
  350. rt_free(sector);
  351. return err;
  352. }
  353. void rt_mmcsd_blk_remove(struct rt_mmcsd_card *card)
  354. {
  355. rt_list_t *l;
  356. struct mmcsd_blk_device *blk_dev;
  357. for (l = (&blk_devices)->next; l != &blk_devices; l = l->next)
  358. {
  359. blk_dev = (struct mmcsd_blk_device *)rt_list_entry(l, struct mmcsd_blk_device, list);
  360. if (blk_dev->card == card)
  361. {
  362. rt_device_unregister(&blk_dev->dev);
  363. rt_list_remove(&blk_dev->list);
  364. rt_free(blk_dev);
  365. }
  366. }
  367. }
  368. void rt_mmcsd_blk_init(void)
  369. {
  370. rt_list_init(&blk_devices);
  371. }