drv_spi.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-05-16 shelton first version
  9. * 2022-11-10 shelton support spi dma
  10. * 2023-01-31 shelton add support f421/f425
  11. * 2023-04-08 shelton add support f423
  12. */
  13. #include "drv_common.h"
  14. #include "drv_spi.h"
  15. #include "drv_config.h"
  16. #include <string.h>
  17. #ifdef RT_USING_SPI
  18. #if !defined(BSP_USING_SPI1) && !defined(BSP_USING_SPI2) && \
  19. !defined(BSP_USING_SPI3) && !defined(BSP_USING_SPI4)
  20. #error "Please define at least one BSP_USING_SPIx"
  21. #endif
  22. //#define DRV_DEBUG
  23. #define LOG_TAG "drv.pwm"
  24. #include <drv_log.h>
  25. enum
  26. {
  27. #ifdef BSP_USING_SPI1
  28. SPI1_INDEX,
  29. #endif
  30. #ifdef BSP_USING_SPI2
  31. SPI2_INDEX,
  32. #endif
  33. #ifdef BSP_USING_SPI3
  34. SPI3_INDEX,
  35. #endif
  36. #ifdef BSP_USING_SPI4
  37. SPI4_INDEX,
  38. #endif
  39. };
  40. static struct at32_spi_config spi_config[] = {
  41. #ifdef BSP_USING_SPI1
  42. SPI1_CONFIG,
  43. #endif
  44. #ifdef BSP_USING_SPI2
  45. SPI2_CONFIG,
  46. #endif
  47. #ifdef BSP_USING_SPI3
  48. SPI3_CONFIG,
  49. #endif
  50. #ifdef BSP_USING_SPI4
  51. SPI4_CONFIG,
  52. #endif
  53. };
  54. /* private rt-thread spi ops function */
  55. static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
  56. static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message);
  57. static struct rt_spi_ops at32_spi_ops =
  58. {
  59. configure,
  60. xfer
  61. };
  62. /**
  63. * attach the spi device to spi bus, this function must be used after initialization.
  64. */
  65. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, gpio_type *cs_gpiox, uint16_t cs_gpio_pin)
  66. {
  67. gpio_init_type gpio_init_struct;
  68. RT_ASSERT(bus_name != RT_NULL);
  69. RT_ASSERT(device_name != RT_NULL);
  70. rt_err_t result;
  71. struct rt_spi_device *spi_device;
  72. struct at32_spi_cs *cs_pin;
  73. /* initialize the cs pin & select the slave*/
  74. gpio_default_para_init(&gpio_init_struct);
  75. gpio_init_struct.gpio_pins = cs_gpio_pin;
  76. gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
  77. gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  78. gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  79. gpio_init(cs_gpiox, &gpio_init_struct);
  80. gpio_bits_set(cs_gpiox, cs_gpio_pin);
  81. /* attach the device to spi bus */
  82. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  83. RT_ASSERT(spi_device != RT_NULL);
  84. cs_pin = (struct at32_spi_cs *)rt_malloc(sizeof(struct at32_spi_cs));
  85. RT_ASSERT(cs_pin != RT_NULL);
  86. cs_pin->gpio_x = cs_gpiox;
  87. cs_pin->gpio_pin = cs_gpio_pin;
  88. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  89. if (result != RT_EOK)
  90. {
  91. LOG_D("%s attach to %s faild, %d\n", device_name, bus_name, result);
  92. }
  93. RT_ASSERT(result == RT_EOK);
  94. LOG_D("%s attach to %s done", device_name, bus_name);
  95. return result;
  96. }
  97. static rt_err_t configure(struct rt_spi_device* device,
  98. struct rt_spi_configuration* configuration)
  99. {
  100. struct rt_spi_bus * spi_bus = (struct rt_spi_bus *)device->bus;
  101. struct at32_spi *instance = (struct at32_spi *)spi_bus->parent.user_data;
  102. spi_init_type spi_init_struct;
  103. RT_ASSERT(device != RT_NULL);
  104. RT_ASSERT(configuration != RT_NULL);
  105. at32_msp_spi_init(instance->config->spi_x);
  106. /* data_width */
  107. if(configuration->data_width <= 8)
  108. {
  109. spi_init_struct.frame_bit_num = SPI_FRAME_8BIT;
  110. }
  111. else if(configuration->data_width <= 16)
  112. {
  113. spi_init_struct.frame_bit_num = SPI_FRAME_16BIT;
  114. }
  115. else
  116. {
  117. return -RT_EIO;
  118. }
  119. /* baudrate */
  120. {
  121. uint32_t spi_apb_clock;
  122. uint32_t max_hz;
  123. crm_clocks_freq_type clocks_struct;
  124. max_hz = configuration->max_hz;
  125. crm_clocks_freq_get(&clocks_struct);
  126. LOG_D("sys freq: %d\n", clocks_struct.sclk_freq);
  127. LOG_D("max freq: %d\n", max_hz);
  128. if (instance->config->spi_x == SPI1)
  129. {
  130. spi_apb_clock = clocks_struct.apb2_freq;
  131. LOG_D("pclk2 freq: %d\n", clocks_struct.apb2_freq);
  132. }
  133. else
  134. {
  135. spi_apb_clock = clocks_struct.apb1_freq;
  136. LOG_D("pclk1 freq: %d\n", clocks_struct.apb1_freq);
  137. }
  138. if(max_hz >= (spi_apb_clock / 2))
  139. {
  140. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_2;
  141. }
  142. else if (max_hz >= (spi_apb_clock / 4))
  143. {
  144. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_4;
  145. }
  146. else if (max_hz >= (spi_apb_clock / 8))
  147. {
  148. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_8;
  149. }
  150. else if (max_hz >= (spi_apb_clock / 16))
  151. {
  152. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_16;
  153. }
  154. else if (max_hz >= (spi_apb_clock / 32))
  155. {
  156. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_32;
  157. }
  158. else if (max_hz >= (spi_apb_clock / 64))
  159. {
  160. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_64;
  161. }
  162. else if (max_hz >= (spi_apb_clock / 128))
  163. {
  164. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_128;
  165. }
  166. else
  167. {
  168. /* min prescaler 256 */
  169. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_256;
  170. }
  171. } /* baudrate */
  172. switch(configuration->mode & RT_SPI_MODE_3)
  173. {
  174. case RT_SPI_MODE_0:
  175. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  176. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  177. break;
  178. case RT_SPI_MODE_1:
  179. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  180. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  181. break;
  182. case RT_SPI_MODE_2:
  183. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  184. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  185. break;
  186. case RT_SPI_MODE_3:
  187. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  188. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  189. break;
  190. }
  191. /* msb or lsb */
  192. if(configuration->mode & RT_SPI_MSB)
  193. {
  194. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_MSB;
  195. }
  196. else
  197. {
  198. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_LSB;
  199. }
  200. spi_init_struct.transmission_mode = SPI_TRANSMIT_FULL_DUPLEX;
  201. spi_init_struct.master_slave_mode = SPI_MODE_MASTER;
  202. spi_init_struct.cs_mode_selection = SPI_CS_SOFTWARE_MODE;
  203. /* disable spi to change transfer size */
  204. spi_enable(instance->config->spi_x, FALSE);
  205. /* init spi */
  206. spi_init(instance->config->spi_x, &spi_init_struct);
  207. /* enable spi */
  208. spi_enable(instance->config->spi_x, TRUE);
  209. /* disable spi crc */
  210. spi_crc_enable(instance->config->spi_x, FALSE);
  211. return RT_EOK;
  212. };
  213. static void _spi_dma_receive(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  214. {
  215. dma_channel_type* dma_channel = instance->config->dma_rx->dma_channel;
  216. dma_channel->dtcnt = size;
  217. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  218. dma_channel->maddr = (rt_uint32_t)buffer;
  219. /* enable transmit complete interrupt */
  220. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  221. /* enable dma receive */
  222. spi_i2s_dma_receiver_enable(instance->config->spi_x, TRUE);
  223. /* mark dma flag */
  224. instance->config->dma_rx->dma_done = RT_FALSE;
  225. /* enable dma channel */
  226. dma_channel_enable(dma_channel, TRUE);
  227. }
  228. static void _spi_dma_transmit(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  229. {
  230. dma_channel_type *dma_channel = instance->config->dma_tx->dma_channel;
  231. dma_channel->dtcnt = size;
  232. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  233. dma_channel->maddr = (rt_uint32_t)buffer;
  234. /* enable spi error interrupt */
  235. spi_i2s_interrupt_enable(instance->config->spi_x, SPI_I2S_ERROR_INT, TRUE);
  236. /* enable transmit complete interrupt */
  237. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  238. /* enable dma transmit */
  239. spi_i2s_dma_transmitter_enable(instance->config->spi_x, TRUE);
  240. /* mark dma flag */
  241. instance->config->dma_tx->dma_done = RT_FALSE;
  242. /* enable dma channel */
  243. dma_channel_enable(dma_channel, TRUE);
  244. }
  245. static void _spi_polling_receive_transmit(struct at32_spi *instance, rt_uint8_t *recv_buf, rt_uint8_t *send_buf, \
  246. rt_uint32_t size, rt_uint8_t data_mode)
  247. {
  248. /* data frame length 8 bit */
  249. if(data_mode <= 8)
  250. {
  251. const rt_uint8_t *send_ptr = send_buf;
  252. rt_uint8_t * recv_ptr = recv_buf;
  253. LOG_D("spi poll transfer start: %d\n", size);
  254. while(size--)
  255. {
  256. rt_uint8_t data = 0xFF;
  257. if(send_ptr != RT_NULL)
  258. {
  259. data = *send_ptr++;
  260. }
  261. /* wait until the transmit buffer is empty */
  262. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  263. /* send the byte */
  264. spi_i2s_data_transmit(instance->config->spi_x, data);
  265. /* wait until a data is received */
  266. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  267. /* get the received data */
  268. data = spi_i2s_data_receive(instance->config->spi_x);
  269. if(recv_ptr != RT_NULL)
  270. {
  271. *recv_ptr++ = data;
  272. }
  273. }
  274. LOG_D("spi poll transfer finsh\n");
  275. }
  276. /* data frame length 16 bit */
  277. else if(data_mode <= 16)
  278. {
  279. const rt_uint16_t * send_ptr = (rt_uint16_t *)send_buf;
  280. rt_uint16_t * recv_ptr = (rt_uint16_t *)recv_buf;
  281. while(size--)
  282. {
  283. rt_uint16_t data = 0xFF;
  284. if(send_ptr != RT_NULL)
  285. {
  286. data = *send_ptr++;
  287. }
  288. /* wait until the transmit buffer is empty */
  289. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  290. /* send the byte */
  291. spi_i2s_data_transmit(instance->config->spi_x, data);
  292. /* wait until a data is received */
  293. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  294. /* get the received data */
  295. data = spi_i2s_data_receive(instance->config->spi_x);
  296. if(recv_ptr != RT_NULL)
  297. {
  298. *recv_ptr++ = data;
  299. }
  300. }
  301. }
  302. }
  303. static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
  304. {
  305. struct rt_spi_bus * at32_spi_bus = (struct rt_spi_bus *)device->bus;
  306. struct at32_spi *instance = (struct at32_spi *)at32_spi_bus->parent.user_data;
  307. struct rt_spi_configuration *config = &device->config;
  308. struct at32_spi_cs * at32_spi_cs = device->parent.user_data;
  309. rt_size_t message_length = 0, already_send_length = 0;
  310. rt_uint16_t send_length = 0;
  311. rt_uint8_t *recv_buf;
  312. const rt_uint8_t *send_buf;
  313. RT_ASSERT(device != NULL);
  314. RT_ASSERT(message != NULL);
  315. /* take cs */
  316. if(message->cs_take)
  317. {
  318. gpio_bits_reset(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  319. LOG_D("spi take cs\n");
  320. }
  321. message_length = message->length;
  322. recv_buf = message->recv_buf;
  323. send_buf = message->send_buf;
  324. while (message_length)
  325. {
  326. /* the HAL library use uint16 to save the data length */
  327. if (message_length > 65535)
  328. {
  329. send_length = 65535;
  330. message_length = message_length - 65535;
  331. }
  332. else
  333. {
  334. send_length = message_length;
  335. message_length = 0;
  336. }
  337. /* calculate the start address */
  338. already_send_length = message->length - send_length - message_length;
  339. /* avoid null pointer problems */
  340. if (message->send_buf)
  341. {
  342. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  343. }
  344. if (message->recv_buf)
  345. {
  346. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  347. }
  348. /* start once data exchange in dma mode */
  349. if (message->send_buf && message->recv_buf)
  350. {
  351. if ((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX) && \
  352. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX))
  353. {
  354. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  355. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  356. /* wait transfer complete */
  357. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  358. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  359. /* clear rx overrun flag */
  360. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  361. spi_enable(instance->config->spi_x, FALSE);
  362. spi_enable(instance->config->spi_x, TRUE);
  363. }
  364. else
  365. {
  366. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)send_buf, send_length, config->data_width);
  367. }
  368. }
  369. else if (message->send_buf)
  370. {
  371. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  372. {
  373. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  374. /* wait transfer complete */
  375. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  376. while(instance->config->dma_tx->dma_done == RT_FALSE);
  377. /* clear rx overrun flag */
  378. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  379. spi_enable(instance->config->spi_x, FALSE);
  380. spi_enable(instance->config->spi_x, TRUE);
  381. }
  382. else
  383. {
  384. _spi_polling_receive_transmit(instance, RT_NULL, (uint8_t *)send_buf, send_length, config->data_width);
  385. }
  386. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  387. {
  388. /* release the cs by disable spi when using 3 wires spi */
  389. spi_enable(instance->config->spi_x, FALSE);
  390. }
  391. }
  392. else
  393. {
  394. memset((void *)recv_buf, 0xff, send_length);
  395. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  396. {
  397. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  398. _spi_dma_transmit(instance, (uint8_t *)recv_buf, send_length);
  399. /* wait transfer complete */
  400. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  401. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  402. /* clear rx overrun flag */
  403. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  404. spi_enable(instance->config->spi_x, FALSE);
  405. spi_enable(instance->config->spi_x, TRUE);
  406. }
  407. else
  408. {
  409. /* clear the old error flag */
  410. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  411. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)recv_buf, send_length, config->data_width);
  412. }
  413. }
  414. }
  415. /* release cs */
  416. if(message->cs_release)
  417. {
  418. gpio_bits_set(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  419. LOG_D("spi release cs\n");
  420. }
  421. return message->length;
  422. }
  423. static void _dma_base_channel_check(struct at32_spi *instance)
  424. {
  425. dma_channel_type *rx_channel = instance->config->dma_rx->dma_channel;
  426. dma_channel_type *tx_channel = instance->config->dma_tx->dma_channel;
  427. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  428. {
  429. instance->config->dma_rx->dma_done = RT_TRUE;
  430. instance->config->dma_rx->dma_x = (dma_type *)((rt_uint32_t)rx_channel & ~0xFF);
  431. instance->config->dma_rx->channel_index = ((((rt_uint32_t)rx_channel & 0xFF) - 8) / 0x14) + 1;
  432. }
  433. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  434. {
  435. instance->config->dma_tx->dma_done = RT_TRUE;
  436. instance->config->dma_tx->dma_x = (dma_type *)((rt_uint32_t)tx_channel & ~0xFF);
  437. instance->config->dma_tx->channel_index = ((((rt_uint32_t)tx_channel & 0xFF) - 8) / 0x14) + 1;
  438. }
  439. }
  440. static void at32_spi_dma_init(struct at32_spi *instance)
  441. {
  442. dma_init_type dma_init_struct;
  443. /* search dma base and channel index */
  444. _dma_base_channel_check(instance);
  445. /* config dma channel */
  446. dma_default_para_init(&dma_init_struct);
  447. dma_init_struct.peripheral_inc_enable = FALSE;
  448. dma_init_struct.memory_inc_enable = TRUE;
  449. dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
  450. dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
  451. dma_init_struct.priority = DMA_PRIORITY_MEDIUM;
  452. dma_init_struct.loop_mode_enable = FALSE;
  453. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  454. {
  455. crm_periph_clock_enable(instance->config->dma_rx->dma_clock, TRUE);
  456. dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
  457. dma_reset(instance->config->dma_rx->dma_channel);
  458. dma_init(instance->config->dma_rx->dma_channel, &dma_init_struct);
  459. #if defined (SOC_SERIES_AT32F425)
  460. dma_flexible_config(instance->config->dma_rx->dma_x, instance->config->dma_rx->flex_channel, \
  461. (dma_flexible_request_type)instance->config->dma_rx->request_id);
  462. #endif
  463. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
  464. defined (SOC_SERIES_AT32F423)
  465. dmamux_enable(instance->config->dma_rx->dma_x, TRUE);
  466. dmamux_init(instance->config->dma_rx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_rx->request_id);
  467. #endif
  468. /* dma irq should set in dma rx mode */
  469. nvic_irq_enable(instance->config->dma_rx->dma_irqn, 0, 1);
  470. }
  471. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  472. {
  473. crm_periph_clock_enable(instance->config->dma_tx->dma_clock, TRUE);
  474. dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
  475. dma_reset(instance->config->dma_tx->dma_channel);
  476. dma_init(instance->config->dma_tx->dma_channel, &dma_init_struct);
  477. #if defined (SOC_SERIES_AT32F425)
  478. dma_flexible_config(instance->config->dma_tx->dma_x, instance->config->dma_tx->flex_channel, \
  479. (dma_flexible_request_type)instance->config->dma_tx->request_id);
  480. #endif
  481. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
  482. defined (SOC_SERIES_AT32F423)
  483. dmamux_enable(instance->config->dma_tx->dma_x, TRUE);
  484. dmamux_init(instance->config->dma_tx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_tx->request_id);
  485. #endif
  486. /* dma irq should set in dma tx mode */
  487. nvic_irq_enable(instance->config->dma_tx->dma_irqn, 0, 1);
  488. }
  489. if((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) || \
  490. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
  491. {
  492. nvic_irq_enable(instance->config->irqn, 0, 0);
  493. }
  494. }
  495. void dma_isr(struct dma_config *dma_instance)
  496. {
  497. volatile rt_uint32_t reg_sts = 0, index = 0;
  498. reg_sts = dma_instance->dma_x->sts;
  499. index = dma_instance->channel_index;
  500. if ((reg_sts & (DMA_FDT_FLAG << (4 * (index - 1)))) != RESET)
  501. {
  502. /* clear dma flag */
  503. dma_instance->dma_x->clr |= (rt_uint32_t)((DMA_FDT_FLAG << (4 * (index - 1))) | \
  504. (DMA_HDT_FLAG << (4 * (index - 1))));
  505. /* disable interrupt */
  506. dma_interrupt_enable(dma_instance->dma_channel, DMA_FDT_INT, FALSE);
  507. /* disable dma channel */
  508. dma_channel_enable(dma_instance->dma_channel, FALSE);
  509. /* mark done flag */
  510. dma_instance->dma_done = RT_TRUE;
  511. }
  512. }
  513. void spi_isr(spi_type *spi_x)
  514. {
  515. if(spi_i2s_flag_get(spi_x, SPI_I2S_ROERR_FLAG) != RESET)
  516. {
  517. /* clear rx overrun error flag */
  518. spi_i2s_flag_clear(spi_x, SPI_I2S_ROERR_FLAG);
  519. }
  520. if(spi_i2s_flag_get(spi_x, SPI_MMERR_FLAG) != RESET)
  521. {
  522. /* clear master mode error flag */
  523. spi_i2s_flag_clear(spi_x, SPI_MMERR_FLAG);
  524. }
  525. }
  526. #ifdef BSP_USING_SPI1
  527. void SPI1_IRQHandler(void)
  528. {
  529. /* enter interrupt */
  530. rt_interrupt_enter();
  531. spi_isr(spi_config[SPI1_INDEX].spi_x);
  532. /* leave interrupt */
  533. rt_interrupt_leave();
  534. }
  535. #if defined(BSP_SPI1_RX_USING_DMA)
  536. void SPI1_RX_DMA_IRQHandler(void)
  537. {
  538. /* enter interrupt */
  539. rt_interrupt_enter();
  540. dma_isr(spi_config[SPI1_INDEX].dma_rx);
  541. /* leave interrupt */
  542. rt_interrupt_leave();
  543. }
  544. #endif /* defined(BSP_SPI1_RX_USING_DMA) */
  545. #if defined(BSP_SPI1_TX_USING_DMA)
  546. void SPI1_TX_DMA_IRQHandler(void)
  547. {
  548. /* enter interrupt */
  549. rt_interrupt_enter();
  550. dma_isr(spi_config[SPI1_INDEX].dma_tx);
  551. /* leave interrupt */
  552. rt_interrupt_leave();
  553. }
  554. #endif /* defined(BSP_SPI1_TX_USING_DMA) */
  555. #endif
  556. #ifdef BSP_USING_SPI2
  557. void SPI2_IRQHandler(void)
  558. {
  559. /* enter interrupt */
  560. rt_interrupt_enter();
  561. spi_isr(spi_config[SPI2_INDEX].spi_x);
  562. /* leave interrupt */
  563. rt_interrupt_leave();
  564. }
  565. #if defined(BSP_SPI2_RX_USING_DMA)
  566. void SPI2_RX_DMA_IRQHandler(void)
  567. {
  568. /* enter interrupt */
  569. rt_interrupt_enter();
  570. dma_isr(spi_config[SPI2_INDEX].dma_rx);
  571. /* leave interrupt */
  572. rt_interrupt_leave();
  573. }
  574. #endif /* defined(BSP_SPI2_RX_USING_DMA) */
  575. #if defined(BSP_SPI2_TX_USING_DMA)
  576. void SPI2_TX_DMA_IRQHandler(void)
  577. {
  578. /* enter interrupt */
  579. rt_interrupt_enter();
  580. dma_isr(spi_config[SPI2_INDEX].dma_tx);
  581. /* leave interrupt */
  582. rt_interrupt_leave();
  583. }
  584. #endif /* defined(BSP_SPI2_TX_USING_DMA) */
  585. #endif
  586. #ifdef BSP_USING_SPI3
  587. void SPI3_IRQHandler(void)
  588. {
  589. /* enter interrupt */
  590. rt_interrupt_enter();
  591. spi_isr(spi_config[SPI3_INDEX].spi_x);
  592. /* leave interrupt */
  593. rt_interrupt_leave();
  594. }
  595. #if defined(BSP_SPI3_RX_USING_DMA)
  596. void SPI3_RX_DMA_IRQHandler(void)
  597. {
  598. /* enter interrupt */
  599. rt_interrupt_enter();
  600. dma_isr(spi_config[SPI3_INDEX].dma_rx);
  601. /* leave interrupt */
  602. rt_interrupt_leave();
  603. }
  604. #endif /* defined(BSP_SPI3_RX_USING_DMA) */
  605. #if defined(BSP_SPI3_TX_USING_DMA)
  606. void SPI3_TX_DMA_IRQHandler(void)
  607. {
  608. /* enter interrupt */
  609. rt_interrupt_enter();
  610. dma_isr(spi_config[SPI3_INDEX].dma_tx);
  611. /* leave interrupt */
  612. rt_interrupt_leave();
  613. }
  614. #endif /* defined(BSP_SPI3_TX_USING_DMA) */
  615. #endif
  616. #ifdef BSP_USING_SPI4
  617. void SPI4_IRQHandler(void)
  618. {
  619. /* enter interrupt */
  620. rt_interrupt_enter();
  621. spi_isr(spi_config[SPI4_INDEX].spi_x);
  622. /* leave interrupt */
  623. rt_interrupt_leave();
  624. }
  625. #if defined(BSP_SPI4_RX_USING_DMA)
  626. void SPI4_RX_DMA_IRQHandler(void)
  627. {
  628. /* enter interrupt */
  629. rt_interrupt_enter();
  630. dma_isr(spi_config[SPI4_INDEX].dma_rx);
  631. /* leave interrupt */
  632. rt_interrupt_leave();
  633. }
  634. #endif /* defined(BSP_SPI4_RX_USING_DMA) */
  635. #if defined(BSP_SPI4_TX_USING_DMA)
  636. void SPI4_TX_DMA_IRQHandler(void)
  637. {
  638. /* enter interrupt */
  639. rt_interrupt_enter();
  640. dma_isr(spi_config[SPI4_INDEX].dma_tx);
  641. /* leave interrupt */
  642. rt_interrupt_leave();
  643. }
  644. #endif /* defined(BSP_SPI14_TX_USING_DMA) */
  645. #endif
  646. #if defined (SOC_SERIES_AT32F421)
  647. void SPI1_TX_RX_DMA_IRQHandler(void)
  648. {
  649. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  650. SPI1_TX_DMA_IRQHandler();
  651. #endif
  652. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  653. SPI1_RX_DMA_IRQHandler();
  654. #endif
  655. }
  656. void SPI2_TX_RX_DMA_IRQHandler(void)
  657. {
  658. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  659. SPI2_TX_DMA_IRQHandler();
  660. #endif
  661. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  662. SPI2_RX_DMA_IRQHandler();
  663. #endif
  664. }
  665. #endif
  666. #if defined (SOC_SERIES_AT32F425)
  667. void SPI1_TX_RX_DMA_IRQHandler(void)
  668. {
  669. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  670. SPI1_TX_DMA_IRQHandler();
  671. #endif
  672. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  673. SPI1_RX_DMA_IRQHandler();
  674. #endif
  675. }
  676. void SPI3_2_TX_RX_DMA_IRQHandler(void)
  677. {
  678. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  679. SPI2_TX_DMA_IRQHandler();
  680. #endif
  681. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  682. SPI2_RX_DMA_IRQHandler();
  683. #endif
  684. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  685. SPI3_TX_DMA_IRQHandler();
  686. #endif
  687. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  688. SPI3_RX_DMA_IRQHandler();
  689. #endif
  690. }
  691. #endif
  692. static struct at32_spi spis[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  693. static void at32_spi_get_dma_config(void)
  694. {
  695. #ifdef BSP_USING_SPI1
  696. spi_config[SPI1_INDEX].spi_dma_flag = 0;
  697. #ifdef BSP_SPI1_RX_USING_DMA
  698. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  699. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  700. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  701. #endif
  702. #ifdef BSP_SPI1_TX_USING_DMA
  703. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  704. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  705. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  706. #endif
  707. #endif
  708. #ifdef BSP_USING_SPI2
  709. spi_config[SPI2_INDEX].spi_dma_flag = 0;
  710. #ifdef BSP_SPI2_RX_USING_DMA
  711. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  712. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  713. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  714. #endif
  715. #ifdef BSP_SPI2_TX_USING_DMA
  716. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  717. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  718. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  719. #endif
  720. #endif
  721. #ifdef BSP_USING_SPI3
  722. spi_config[SPI3_INDEX].spi_dma_flag = 0;
  723. #ifdef BSP_SPI3_RX_USING_DMA
  724. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  725. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  726. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  727. #endif
  728. #ifdef BSP_SPI3_TX_USING_DMA
  729. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  730. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  731. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  732. #endif
  733. #endif
  734. #ifdef BSP_USING_SPI4
  735. spi_config[SPI4_INDEX].spi_dma_flag = 0;
  736. #ifdef BSP_SPI4_RX_USING_DMA
  737. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  738. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  739. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  740. #endif
  741. #ifdef BSP_SPI4_TX_USING_DMA
  742. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  743. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  744. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  745. #endif
  746. #endif
  747. }
  748. int rt_hw_spi_init(void)
  749. {
  750. int i;
  751. rt_err_t result;
  752. rt_size_t obj_num = sizeof(spi_config) / sizeof(spi_config[0]);
  753. at32_spi_get_dma_config();
  754. for (i = 0; i < obj_num; i++)
  755. {
  756. spis[i].config = &spi_config[i];
  757. spis[i].spi_bus.parent.user_data = (void *)&spis[i];
  758. if(spis[i].config->spi_dma_flag & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
  759. {
  760. at32_spi_dma_init(&spis[i]);
  761. }
  762. result = rt_spi_bus_register(&(spis[i].spi_bus), spis[i].config->spi_name, &at32_spi_ops);
  763. }
  764. return result;
  765. }
  766. INIT_BOARD_EXPORT(rt_hw_spi_init);
  767. #endif