drv_rtc.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /*
  2. * Copyright (c) 2006-2024, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2024-03-04 ShichengChu the first version
  9. */
  10. #include <rtthread.h>
  11. #include <rtdevice.h>
  12. #define DBG_TAG "DRV.RTC"
  13. #define DBG_LVL DBG_WARNING
  14. #include <rtdbg.h>
  15. #include "pinctrl.h"
  16. #include "mmio.h"
  17. #include "drv_ioremap.h"
  18. #define CVI_RTC_BASE 0x05026000U
  19. #define RTC_ALARM_O 17
  20. #define CVI_RTC_CTRL_BASE 0x05025000U
  21. #define CLK_EN_0 0x03002000U
  22. #define CLK_RTC_25M_BIT (1 << 8)
  23. /* CVITEK RTC registers */
  24. #define CVI_RTC_ANA_CALIB 0x0
  25. #define CVI_RTC_SEC_PULSE_GEN 0x4
  26. #define CVI_RTC_ALARM_TIME 0x8
  27. #define CVI_RTC_ALARM_ENABLE 0xC
  28. #define CVI_RTC_SET_SEC_CNTR_VALUE 0x10
  29. #define CVI_RTC_SET_SEC_CNTR_TRIG 0x14
  30. #define CVI_RTC_SEC_CNTR_VALUE 0x18
  31. #define CVI_RTC_APB_RDATA_SEL 0x3C
  32. #define CVI_RTC_POR_DB_MAGIC_KEY 0x68
  33. #define CVI_RTC_EN_PWR_WAKEUP 0xBC
  34. #define CVI_RTC_PWR_DET_SEL 0x140
  35. /* CVITEK RTC MACRO registers */
  36. #define RTC_MACRO_DA_CLEAR_ALL 0x480
  37. #define RTC_MACRO_DA_SOC_READY 0x48C
  38. #define RTC_MACRO_RO_T 0x4A8
  39. #define RTC_MACRO_RG_SET_T 0x498
  40. /* CVITEK RTC CTRL registers */
  41. #define CVI_RTC_FC_COARSE_EN 0x40
  42. #define CVI_RTC_FC_COARSE_CAL 0x44
  43. #define CVI_RTC_FC_FINE_EN 0x48
  44. #define CVI_RTC_FC_FINE_CAL 0x50
  45. #define RTC_SEC_MAX_VAL 0xFFFFFFFF
  46. #define RTC_OFFSET_SN 0x5201800
  47. #define RTC_ALARM_IRQ_NUM 0x11
  48. struct rtc_device_object
  49. {
  50. rt_rtc_dev_t rtc_dev;
  51. rt_ubase_t base;
  52. };
  53. static struct rtc_device_object rtc_device;
  54. #define LEAPS_THRU_END_OF(y) ((y)/4 - (y)/100 + (y)/400)
  55. typedef struct {
  56. int tm_sec; ///< Second. [0-59]
  57. int tm_min; ///< Minute. [0-59]
  58. int tm_hour; ///< Hour. [0-23]
  59. int tm_mday; ///< Day. [1-31]
  60. int tm_mon; ///< Month. [0-11]
  61. int tm_year; ///< Year-1900. [70- ] !NOTE:Set 100 mean 2000
  62. int tm_wday; ///< Day of week. [0-6 ] !NOTE:Set 0 mean Sunday
  63. int tm_yday; ///< Days in year.[0-365] !NOTE:Set 0 mean January 1st
  64. } cvi_rtc_time_t;
  65. static const unsigned char cvi_rtc_days_in_month[] = {
  66. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  67. };
  68. static inline int is_leap_year(unsigned int year)
  69. {
  70. return (!(year % 4) && (year % 100)) || !(year % 400);
  71. }
  72. static int rtc_month_days(unsigned int month, unsigned int year)
  73. {
  74. return cvi_rtc_days_in_month[month] + (is_leap_year(year) && month == 1);
  75. }
  76. static void hal_cvi_rtc_clk_set(int enable)
  77. {
  78. uint32_t clk_state;
  79. rt_ubase_t clk = (rt_ubase_t)DRV_IOREMAP((void *)CLK_EN_0, 0x1000);
  80. clk_state = mmio_read_32(clk);
  81. if(enable)
  82. clk_state |= CLK_RTC_25M_BIT;
  83. else
  84. clk_state &= ~(CLK_RTC_25M_BIT);
  85. mmio_write_32(clk, clk_state);
  86. }
  87. static void hal_cvi_rtc_enable_sec_counter(uintptr_t rtc_base)
  88. {
  89. uint32_t value = 0;
  90. value = mmio_read_32(rtc_base + CVI_RTC_SEC_PULSE_GEN) & 0x7FFFFFFF;
  91. mmio_write_32(rtc_base + CVI_RTC_SEC_PULSE_GEN, value);
  92. value = mmio_read_32(rtc_base + CVI_RTC_ANA_CALIB) & 0x7FFFFFFF;
  93. mmio_write_32(rtc_base + CVI_RTC_ANA_CALIB, value);
  94. mmio_read_32(rtc_base + CVI_RTC_SEC_CNTR_VALUE);
  95. mmio_write_32(rtc_base + CVI_RTC_ALARM_ENABLE, 0x0);
  96. }
  97. static void hal_cvi_rtc_set_time(uintptr_t rtc_base, unsigned long sec)
  98. {
  99. mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_VALUE, sec);
  100. mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_TRIG, 1);
  101. mmio_write_32(rtc_base + RTC_MACRO_RG_SET_T, sec);
  102. mmio_write_32(rtc_base + RTC_MACRO_DA_CLEAR_ALL, 1);
  103. mmio_write_32(rtc_base + RTC_MACRO_DA_SOC_READY, 1);
  104. mmio_write_32(rtc_base + RTC_MACRO_DA_CLEAR_ALL, 0);
  105. mmio_write_32(rtc_base + RTC_MACRO_RG_SET_T, 0);
  106. mmio_write_32(rtc_base + RTC_MACRO_DA_SOC_READY, 0);
  107. }
  108. static int hal_cvi_rtc_get_time_sec(uintptr_t rtc_base,unsigned long *ret_sec)
  109. {
  110. int ret = 0;
  111. unsigned long sec;
  112. unsigned long sec_ro_t;
  113. sec = mmio_read_32(rtc_base + CVI_RTC_SEC_CNTR_VALUE);
  114. sec_ro_t = mmio_read_32(rtc_base + RTC_MACRO_RO_T);
  115. LOG_D("sec=%lx, sec_ro_t=%lx\n", sec, sec_ro_t);
  116. if (sec_ro_t > 0x30000000) {
  117. sec = sec_ro_t;
  118. // Writeback to SEC CVI_RTC_SEC_CNTR_VALUE
  119. mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_VALUE, sec);
  120. mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_TRIG, 1);
  121. } else if (sec < 0x30000000) {
  122. LOG_D("RTC invalid time\n");
  123. ret = -EINVAL;
  124. }
  125. *ret_sec = sec;
  126. return ret;
  127. }
  128. static inline int64_t div_u64_rem(uint64_t dividend, uint32_t divisor, uint32_t *remainder)
  129. {
  130. *remainder = dividend % divisor;
  131. return dividend / divisor;
  132. }
  133. /*
  134. * rtc_time_to_tm64 - Converts time64_t to rtc_time.
  135. * Convert seconds since 01-01-1970 00:00:00 to Gregorian date.
  136. */
  137. static void rtc_time64_to_tm(int64_t time, cvi_rtc_time_t *cvi_tm)
  138. {
  139. unsigned int month, year, secs;
  140. int days;
  141. /* time must be positive */
  142. days = div_u64_rem(time, 86400, &secs);
  143. /* day of the week, 1970-01-01 was a Thursday */
  144. cvi_tm->tm_wday = (days + 4) % 7;
  145. year = 1970 + days / 365;
  146. days -= (year - 1970) * 365
  147. + LEAPS_THRU_END_OF(year - 1)
  148. - LEAPS_THRU_END_OF(1970 - 1);
  149. while (days < 0) {
  150. year -= 1;
  151. days += 365 + is_leap_year(year);
  152. }
  153. cvi_tm->tm_year = year - 1900;
  154. cvi_tm->tm_yday = days + 1;
  155. for (month = 0; month < 11; month++) {
  156. int newdays;
  157. newdays = days - rtc_month_days(month, year);
  158. if (newdays < 0)
  159. break;
  160. days = newdays;
  161. }
  162. cvi_tm->tm_mon = month;
  163. cvi_tm->tm_mday = days + 1;
  164. cvi_tm->tm_hour = secs / 3600;
  165. secs -= cvi_tm->tm_hour * 3600;
  166. cvi_tm->tm_min = secs / 60;
  167. cvi_tm->tm_sec = secs - cvi_tm->tm_min * 60;
  168. }
  169. static int64_t mktime64(const unsigned int year0, const unsigned int mon0,
  170. const unsigned int day, const unsigned int hour,
  171. const unsigned int min, const unsigned int sec)
  172. {
  173. unsigned int mon = mon0, year = year0;
  174. /* 1..12 -> 11,12,1..10 */
  175. if (0 >= (int) (mon -= 2)) {
  176. mon += 12; /* Puts Feb last since it has leap day */
  177. year -= 1;
  178. }
  179. return ((((int64_t)
  180. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  181. year*365 - 719499
  182. )*24 + hour /* now have hours - midnight tomorrow handled here */
  183. )*60 + min /* now have minutes */
  184. )*60 + sec; /* finally seconds */
  185. }
  186. /*
  187. * rtc_tm_to_time64 - Converts rtc_time to time64_t.
  188. * Convert Gregorian date to seconds since 01-01-1970 00:00:00.
  189. */
  190. static int64_t rtc_tm_to_time64(const cvi_rtc_time_t *cvi_tm)
  191. {
  192. return mktime64(cvi_tm->tm_year + 1900, cvi_tm->tm_mon + 1, cvi_tm->tm_mday,
  193. cvi_tm->tm_hour, cvi_tm->tm_min, cvi_tm->tm_sec);
  194. }
  195. static rt_err_t _rtc_get_timeval(struct timeval *tv)
  196. {
  197. unsigned long sec;
  198. cvi_rtc_time_t t = {0};
  199. struct tm tm_new = {0};
  200. hal_cvi_rtc_get_time_sec(rtc_device.base, &sec);
  201. rtc_time64_to_tm(sec, &t);
  202. tm_new.tm_sec = t.tm_sec;
  203. tm_new.tm_min = t.tm_min;
  204. tm_new.tm_hour = t.tm_hour;
  205. tm_new.tm_wday = t.tm_wday;
  206. tm_new.tm_mday = t.tm_mday;
  207. tm_new.tm_mon = t.tm_mon;
  208. tm_new.tm_year = t.tm_year;
  209. tv->tv_sec = timegm(&tm_new);
  210. return RT_EOK;
  211. }
  212. static rt_err_t _rtc_init(void)
  213. {
  214. hal_cvi_rtc_clk_set(1);
  215. hal_cvi_rtc_enable_sec_counter(rtc_device.base);
  216. return RT_EOK;
  217. }
  218. static rt_err_t _rtc_get_secs(time_t *sec)
  219. {
  220. struct timeval tv;
  221. _rtc_get_timeval(&tv);
  222. *(time_t *) sec = tv.tv_sec;
  223. LOG_D("RTC: get rtc_time %d", *sec);
  224. return RT_EOK;
  225. }
  226. static rt_err_t _rtc_set_secs(time_t *sec)
  227. {
  228. rt_err_t result = RT_EOK;
  229. cvi_rtc_time_t t = {0};
  230. struct tm tm = {0};
  231. unsigned long set_sec;
  232. gmtime_r(sec, &tm);
  233. t.tm_sec = tm.tm_sec;
  234. t.tm_min = tm.tm_min;
  235. t.tm_hour = tm.tm_hour;
  236. t.tm_mday = tm.tm_mday;
  237. t.tm_mon = tm.tm_mon;
  238. t.tm_year = tm.tm_year;
  239. t.tm_wday = tm.tm_wday;
  240. set_sec = rtc_tm_to_time64(&t);
  241. hal_cvi_rtc_set_time(rtc_device.base, set_sec);
  242. return result;
  243. }
  244. #ifdef RT_USING_ALARM
  245. static void rtc_alarm_enable(rt_bool_t enable)
  246. {
  247. mmio_write_32(rtc_device.base + CVI_RTC_ALARM_ENABLE, enable);
  248. }
  249. static void rt_hw_rtc_isr(int irqno, void *param)
  250. {
  251. rt_interrupt_enter();
  252. /* send event to alarm */
  253. rt_alarm_update(&rtc_device.rtc_dev.parent, 1);
  254. /* clear alarm */
  255. rtc_alarm_enable(0);
  256. rt_interrupt_leave();
  257. }
  258. static rt_err_t _rtc_get_alarm(struct rt_rtc_wkalarm *alarm)
  259. {
  260. if (alarm == RT_NULL)
  261. return -RT_ERROR;
  262. unsigned long int sec;
  263. cvi_rtc_time_t t = {0};
  264. sec = mmio_read_32(rtc_device.base + CVI_RTC_ALARM_TIME);
  265. rtc_time64_to_tm(sec, &t);
  266. alarm->tm_sec = t.tm_sec;
  267. alarm->tm_min = t.tm_min;
  268. alarm->tm_hour = t.tm_hour;
  269. alarm->tm_mday = t.tm_mday;
  270. alarm->tm_mon = t.tm_mon;
  271. alarm->tm_year = t.tm_year;
  272. LOG_D("GET_ALARM %d:%d:%d", alarm->tm_hour, alarm->tm_min, alarm->tm_sec);
  273. return RT_EOK;
  274. }
  275. static rt_err_t _rtc_set_alarm(struct rt_rtc_wkalarm *alarm)
  276. {
  277. if (alarm == RT_NULL)
  278. return -RT_ERROR;
  279. cvi_rtc_time_t t = {0};
  280. unsigned long int set_sec;
  281. if (alarm->enable){
  282. t.tm_sec = alarm->tm_sec;
  283. t.tm_min = alarm->tm_min;
  284. t.tm_hour = alarm->tm_hour;
  285. t.tm_mday = alarm->tm_mday;
  286. t.tm_mon = alarm->tm_mon;
  287. t.tm_year = alarm->tm_year;
  288. set_sec = rtc_tm_to_time64(&t);
  289. mmio_write_32(rtc_device.base + CVI_RTC_ALARM_TIME, set_sec);
  290. LOG_D("GET_ALARM %d:%d:%d", alarm->tm_hour, alarm->tm_min, alarm->tm_sec);
  291. }
  292. rtc_alarm_enable(alarm->enable);
  293. return RT_EOK;
  294. }
  295. #endif
  296. static const struct rt_rtc_ops _rtc_ops =
  297. {
  298. _rtc_init,
  299. _rtc_get_secs,
  300. _rtc_set_secs,
  301. #ifdef RT_USING_ALARM
  302. _rtc_get_alarm,
  303. _rtc_set_alarm,
  304. #else
  305. RT_NULL,
  306. RT_NULL,
  307. #endif
  308. _rtc_get_timeval,
  309. RT_NULL,
  310. };
  311. static int rt_hw_rtc_init(void)
  312. {
  313. rt_err_t result;
  314. rtc_device.rtc_dev.ops = &_rtc_ops;
  315. rtc_device.base = CVI_RTC_BASE;
  316. rtc_device.base = (rt_ubase_t)DRV_IOREMAP((void *)rtc_device.base, 0x1000);
  317. result = rt_hw_rtc_register(&rtc_device.rtc_dev, "rtc", RT_DEVICE_FLAG_RDWR, RT_NULL);
  318. if (result != RT_EOK)
  319. {
  320. LOG_E("rtc register err code: %d", result);
  321. return result;
  322. }
  323. #ifdef RT_USING_ALARM
  324. rt_hw_interrupt_install(RTC_ALARM_IRQ_NUM, rt_hw_rtc_isr, RT_NULL, "rtc");
  325. rt_hw_interrupt_umask(RTC_ALARM_IRQ_NUM);
  326. #endif
  327. LOG_D("rtc init success");
  328. return RT_EOK;
  329. }
  330. INIT_DEVICE_EXPORT(rt_hw_rtc_init);