drv_hwtimer.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-08-26 AisinoChip first version
  9. */
  10. #include <board.h>
  11. #include <rtthread.h>
  12. #include <rtdevice.h>
  13. #ifdef BSP_USING_TIM
  14. #include "tim_config.h"
  15. #ifdef RT_USING_HWTIMER
  16. enum
  17. {
  18. #ifdef BSP_USING_TIM1
  19. TIM1_INDEX,
  20. #endif
  21. #ifdef BSP_USING_TIM3
  22. TIM3_INDEX,
  23. #endif
  24. #ifdef BSP_USING_TIM6
  25. TIM6_INDEX,
  26. #endif
  27. #ifdef BSP_USING_TIM14
  28. TIM14_INDEX,
  29. #endif
  30. #ifdef BSP_USING_TIM15
  31. TIM15_INDEX,
  32. #endif
  33. #ifdef BSP_USING_TIM16
  34. TIM16_INDEX,
  35. #endif
  36. #ifdef BSP_USING_TIM17
  37. TIM17_INDEX,
  38. #endif
  39. };
  40. struct acm32_hwtimer
  41. {
  42. rt_hwtimer_t time_device;
  43. TIM_HandleTypeDef tim_handle;
  44. IRQn_Type tim_irqn;
  45. char *name;
  46. };
  47. static struct acm32_hwtimer acm32_hwtimer_obj[] =
  48. {
  49. #ifdef BSP_USING_TIM1
  50. TIM1_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_TIM3
  53. TIM3_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_TIM6
  56. TIM6_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_TIM14
  59. TIM14_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_TIM15
  62. TIM15_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_TIM16
  65. TIM16_CONFIG,
  66. #endif
  67. #ifdef BSP_USING_TIM17
  68. TIM17_CONFIG,
  69. #endif
  70. };
  71. static void timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
  72. {
  73. rt_uint32_t timer_clock = 0;
  74. TIM_HandleTypeDef *tim = RT_NULL;
  75. RT_ASSERT(timer != RT_NULL);
  76. if (state)
  77. {
  78. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  79. /* time init */
  80. timer_clock = System_Get_APBClock();
  81. if (System_Get_SystemClock() != System_Get_APBClock()) /* if hclk/pclk != 1, then timer clk = pclk * 2 */
  82. {
  83. timer_clock = System_Get_APBClock() << 1;
  84. }
  85. tim->Init.Period = (timer->freq) - 1;
  86. tim->Init.Prescaler = (timer_clock / timer->freq) - 1 ;
  87. tim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  88. if (timer->info->cntmode == HWTIMER_CNTMODE_UP)
  89. {
  90. tim->Init.CounterMode = TIM_COUNTERMODE_UP;
  91. }
  92. else
  93. {
  94. tim->Init.CounterMode = TIM_COUNTERMODE_DOWN;
  95. }
  96. tim->Init.RepetitionCounter = 0;
  97. tim->Init.ARRPreLoadEn = TIM_ARR_PRELOAD_ENABLE;
  98. HAL_TIMER_MSP_Init(tim);
  99. HAL_TIMER_Base_Init(tim);
  100. }
  101. }
  102. static rt_err_t timer_start(rt_hwtimer_t *timer, rt_uint32_t t, rt_hwtimer_mode_t opmode)
  103. {
  104. TIM_HandleTypeDef *tim = RT_NULL;
  105. RT_ASSERT(timer != RT_NULL);
  106. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  107. /* set tim cnt */
  108. tim->Instance->CNT = 0;
  109. /* set tim arr */
  110. tim->Instance->ARR = t - 1;
  111. if (opmode == HWTIMER_MODE_ONESHOT)
  112. {
  113. /* set timer to single mode */
  114. SET_BIT(tim->Instance->CR1, BIT3);
  115. }
  116. else
  117. {
  118. /* set timer to period mode */
  119. CLEAR_BIT(tim->Instance->CR1, BIT3);
  120. }
  121. /* enable IRQ */
  122. HAL_TIM_ENABLE_IT(tim, TIMER_INT_EN_UPD);
  123. /* start timer */
  124. HAL_TIMER_Base_Start(tim->Instance);
  125. return RT_EOK;
  126. }
  127. static void timer_stop(rt_hwtimer_t *timer)
  128. {
  129. TIM_HandleTypeDef *tim = RT_NULL;
  130. RT_ASSERT(timer != RT_NULL);
  131. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  132. /* stop timer */
  133. HAL_TIMER_Base_Stop(tim->Instance);
  134. }
  135. static rt_err_t timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
  136. {
  137. TIM_HandleTypeDef *tim = RT_NULL;
  138. rt_err_t result = RT_EOK;
  139. RT_ASSERT(timer != RT_NULL);
  140. RT_ASSERT(arg != RT_NULL);
  141. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  142. switch (cmd)
  143. {
  144. case HWTIMER_CTRL_FREQ_SET:
  145. {
  146. rt_uint32_t freq;
  147. rt_uint32_t timer_clock;
  148. rt_uint16_t val;
  149. /* set timer frequence */
  150. freq = *((rt_uint32_t *)arg);
  151. timer_clock = System_Get_APBClock();
  152. if (System_Get_SystemClock() != System_Get_APBClock()) /* if hclk/pclk != 1, then timer clk = pclk * 2 */
  153. {
  154. timer_clock = System_Get_APBClock() << 1;
  155. }
  156. val = timer_clock / freq;
  157. tim->Instance->PSC = val - 1;
  158. /* Update frequency value */
  159. tim->Instance->CR1 = BIT2; /* CEN=0, URS=1, OPM = 0 */
  160. tim->Instance->EGR |= TIM_EVENTSOURCE_UPDATE;
  161. }
  162. break;
  163. default:
  164. {
  165. result = -RT_ENOSYS;
  166. }
  167. break;
  168. }
  169. return result;
  170. }
  171. static rt_uint32_t timer_counter_get(rt_hwtimer_t *timer)
  172. {
  173. RT_ASSERT(timer != RT_NULL);
  174. return ((TIM_HandleTypeDef *)timer->parent.user_data)->Instance->CNT;
  175. }
  176. static const struct rt_hwtimer_info _info = TIM_DEV_INFO_CONFIG;
  177. static const struct rt_hwtimer_ops _ops =
  178. {
  179. .init = timer_init,
  180. .start = timer_start,
  181. .stop = timer_stop,
  182. .count_get = timer_counter_get,
  183. .control = timer_ctrl,
  184. };
  185. #ifdef BSP_USING_TIM1
  186. void TIM1_BRK_UP_TRG_COM_IRQHandler(void)
  187. {
  188. /* enter interrupt */
  189. rt_interrupt_enter();
  190. /* interrupt service routine */
  191. if (TIM1->SR & TIMER_SR_UIF)
  192. {
  193. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM1_INDEX].time_device);
  194. }
  195. TIM1->SR = 0; /* write 0 to clear hardware flag */
  196. /* leave interrupt */
  197. rt_interrupt_leave();
  198. }
  199. #endif
  200. #ifdef BSP_USING_TIM3
  201. void TIM3_IRQHandler(void)
  202. {
  203. /* enter interrupt */
  204. rt_interrupt_enter();
  205. if (TIM3->SR & TIMER_SR_UIF)
  206. {
  207. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM3_INDEX].time_device);
  208. }
  209. TIM3->SR = 0; /* write 0 to clear hardware flag */
  210. /* leave interrupt */
  211. rt_interrupt_leave();
  212. }
  213. #endif
  214. #ifdef BSP_USING_TIM6
  215. void TIM6_IRQHandler(void)
  216. {
  217. /* enter interrupt */
  218. rt_interrupt_enter();
  219. /* interrupt service routine */
  220. if (TIM6->SR & TIMER_SR_UIF)
  221. {
  222. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM6_INDEX].time_device);
  223. }
  224. TIM6->SR = 0; /* write 0 to clear hardware flag */
  225. /* leave interrupt */
  226. rt_interrupt_leave();
  227. }
  228. #endif
  229. #ifdef BSP_USING_TIM14
  230. void TIM14_IRQHandler(void)
  231. {
  232. /* enter interrupt */
  233. rt_interrupt_enter();
  234. /* interrupt service routine */
  235. if (TIM14->SR & TIMER_SR_UIF)
  236. {
  237. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM14_INDEX].time_device);
  238. }
  239. TIM14->SR = 0; /* write 0 to clear hardware flag */
  240. /* leave interrupt */
  241. rt_interrupt_leave();
  242. }
  243. #endif
  244. #ifdef BSP_USING_TIM15
  245. void TIM15_IRQHandler(void)
  246. {
  247. /* enter interrupt */
  248. rt_interrupt_enter();
  249. /* interrupt service routine */
  250. if (TIM15->SR & TIMER_SR_UIF)
  251. {
  252. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM15_INDEX].time_device);
  253. }
  254. TIM15->SR = 0; /* write 0 to clear hardware flag */
  255. /* leave interrupt */
  256. rt_interrupt_leave();
  257. }
  258. #endif
  259. #ifdef BSP_USING_TIM16
  260. void TIM16_IRQHandler(void)
  261. {
  262. /* enter interrupt */
  263. rt_interrupt_enter();
  264. if (TIM16->SR & TIMER_SR_UIF)
  265. {
  266. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM16_INDEX].time_device);
  267. }
  268. TIM16->SR = 0; /* write 0 to clear hardware flag */
  269. /* leave interrupt */
  270. rt_interrupt_leave();
  271. }
  272. #endif
  273. #ifdef BSP_USING_TIM17
  274. void TIM17_IRQHandler(void)
  275. {
  276. /* enter interrupt */
  277. rt_interrupt_enter();
  278. if (TIM17->SR & TIMER_SR_UIF)
  279. {
  280. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM17_INDEX].time_device);
  281. }
  282. TIM17->SR = 0; /* write 0 to clear hardware flag */
  283. /* leave interrupt */
  284. rt_interrupt_leave();
  285. }
  286. #endif
  287. static int acm32_hwtimer_init(void)
  288. {
  289. int i = 0;
  290. int result = RT_EOK;
  291. for (i = 0; i < sizeof(acm32_hwtimer_obj) / sizeof(acm32_hwtimer_obj[0]); i++)
  292. {
  293. acm32_hwtimer_obj[i].time_device.info = &_info;
  294. acm32_hwtimer_obj[i].time_device.ops = &_ops;
  295. result = rt_device_hwtimer_register(&acm32_hwtimer_obj[i].time_device,
  296. acm32_hwtimer_obj[i].name,
  297. &acm32_hwtimer_obj[i].tim_handle);
  298. if (result != RT_EOK)
  299. {
  300. result = -RT_ERROR;
  301. break;
  302. }
  303. }
  304. return result;
  305. }
  306. INIT_BOARD_EXPORT(acm32_hwtimer_init);
  307. #endif /* RT_USING_HWTIMER */
  308. #endif /* BSP_USING_TIM */