drv_spi.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef RT_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. spi_handle->TxXferSize = 8;
  94. spi_handle->RxXferSize = 8;
  95. }
  96. else if (cfg->data_width == 16)
  97. {
  98. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  99. }
  100. else
  101. {
  102. return RT_EIO;
  103. }
  104. if (cfg->mode & RT_SPI_CPHA)
  105. {
  106. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  107. }
  108. else
  109. {
  110. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  111. }
  112. if (cfg->mode & RT_SPI_CPOL)
  113. {
  114. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  115. }
  116. else
  117. {
  118. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  119. }
  120. if (cfg->mode & RT_SPI_NO_CS)
  121. {
  122. spi_handle->Init.NSS = SPI_NSS_HARD_OUTPUT;
  123. }
  124. else
  125. {
  126. spi_handle->Init.NSS = SPI_NSS_SOFT;
  127. }
  128. uint32_t SPI_APB_CLOCK;
  129. #if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
  130. SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
  131. #elif defined(SOC_SERIES_STM32H7)
  132. SPI_APB_CLOCK = HAL_RCC_GetSysClockFreq();
  133. #else
  134. SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
  135. #endif
  136. if (cfg->max_hz >= SPI_APB_CLOCK / 2)
  137. {
  138. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  139. }
  140. else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
  141. {
  142. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  143. }
  144. else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
  145. {
  146. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  147. }
  148. else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
  149. {
  150. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  151. }
  152. else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
  153. {
  154. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  155. }
  156. else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
  157. {
  158. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  159. }
  160. else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
  161. {
  162. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  163. }
  164. else
  165. {
  166. /* min prescaler 256 */
  167. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  168. }
  169. LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
  170. #if defined(SOC_SERIES_STM32MP1)
  171. HAL_RCC_GetSystemCoreClockFreq(),
  172. #else
  173. HAL_RCC_GetSysClockFreq(),
  174. #endif
  175. SPI_APB_CLOCK,
  176. cfg->max_hz,
  177. spi_handle->Init.BaudRatePrescaler);
  178. if (cfg->mode & RT_SPI_MSB)
  179. {
  180. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  181. }
  182. else
  183. {
  184. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  185. }
  186. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  187. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  188. spi_handle->State = HAL_SPI_STATE_RESET;
  189. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  190. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  191. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  192. spi_handle->Init.Mode = SPI_MODE_MASTER;
  193. spi_handle->Init.NSS = SPI_NSS_SOFT;
  194. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  195. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  196. spi_handle->Init.CRCPolynomial = 7;
  197. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  198. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  199. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  200. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  201. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  202. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  203. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  204. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
  205. #endif
  206. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  207. {
  208. return RT_EIO;
  209. }
  210. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  211. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  212. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  213. #endif
  214. /* DMA configuration */
  215. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  216. {
  217. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  218. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  219. /* NVIC configuration for DMA transfer complete interrupt */
  220. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  221. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  222. }
  223. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  224. {
  225. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  226. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  227. /* NVIC configuration for DMA transfer complete interrupt */
  228. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 0, 1);
  229. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  230. }
  231. if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  232. {
  233. HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
  234. HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
  235. }
  236. LOG_D("%s init done", spi_drv->config->bus_name);
  237. return RT_EOK;
  238. }
  239. static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  240. {
  241. HAL_StatusTypeDef state;
  242. rt_size_t message_length, already_send_length;
  243. rt_uint16_t send_length;
  244. rt_uint8_t *recv_buf;
  245. const rt_uint8_t *send_buf;
  246. RT_ASSERT(device != RT_NULL);
  247. RT_ASSERT(device->bus != RT_NULL);
  248. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  249. RT_ASSERT(message != RT_NULL);
  250. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  251. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  252. struct stm32_hw_spi_cs *cs = device->parent.user_data;
  253. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
  254. {
  255. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
  256. }
  257. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  258. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  259. spi_drv->config->bus_name,
  260. (uint32_t)message->send_buf,
  261. (uint32_t)message->recv_buf, message->length);
  262. message_length = message->length;
  263. recv_buf = message->recv_buf;
  264. send_buf = message->send_buf;
  265. while (message_length)
  266. {
  267. /* the HAL library use uint16 to save the data length */
  268. if (message_length > 65535)
  269. {
  270. send_length = 65535;
  271. message_length = message_length - 65535;
  272. }
  273. else
  274. {
  275. send_length = message_length;
  276. message_length = 0;
  277. }
  278. /* calculate the start address */
  279. already_send_length = message->length - send_length - message_length;
  280. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  281. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  282. /* start once data exchange in DMA mode */
  283. if (message->send_buf && message->recv_buf)
  284. {
  285. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
  286. {
  287. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
  288. }
  289. else
  290. {
  291. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  292. }
  293. }
  294. else if (message->send_buf)
  295. {
  296. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  297. {
  298. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
  299. }
  300. else
  301. {
  302. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  303. }
  304. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  305. {
  306. /* release the CS by disable SPI when using 3 wires SPI */
  307. __HAL_SPI_DISABLE(spi_handle);
  308. }
  309. }
  310. else
  311. {
  312. memset((uint8_t *)recv_buf, 0xff, send_length);
  313. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  314. {
  315. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
  316. }
  317. else
  318. {
  319. /* clear the old error flag */
  320. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  321. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  322. }
  323. }
  324. if (state != HAL_OK)
  325. {
  326. LOG_I("spi transfer error : %d", state);
  327. message->length = 0;
  328. spi_handle->State = HAL_SPI_STATE_READY;
  329. }
  330. else
  331. {
  332. LOG_D("%s transfer done", spi_drv->config->bus_name);
  333. }
  334. /* For simplicity reasons, this example is just waiting till the end of the
  335. transfer, but application may perform other tasks while transfer operation
  336. is ongoing. */
  337. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  338. }
  339. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
  340. {
  341. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
  342. }
  343. return message->length;
  344. }
  345. static rt_err_t spi_configure(struct rt_spi_device *device,
  346. struct rt_spi_configuration *configuration)
  347. {
  348. RT_ASSERT(device != RT_NULL);
  349. RT_ASSERT(configuration != RT_NULL);
  350. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  351. spi_drv->cfg = configuration;
  352. return stm32_spi_init(spi_drv, configuration);
  353. }
  354. static const struct rt_spi_ops stm_spi_ops =
  355. {
  356. .configure = spi_configure,
  357. .xfer = spixfer,
  358. };
  359. static int rt_hw_spi_bus_init(void)
  360. {
  361. rt_err_t result;
  362. for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  363. {
  364. spi_bus_obj[i].config = &spi_config[i];
  365. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  366. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  367. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  368. {
  369. /* Configure the DMA handler for Transmission process */
  370. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  371. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  372. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  373. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  374. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  375. #endif
  376. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  377. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  378. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  379. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  380. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  381. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  382. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  383. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1)
  384. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  385. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  386. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  387. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  388. #endif
  389. {
  390. rt_uint32_t tmpreg = 0x00U;
  391. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  392. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  393. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  394. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  395. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB)
  396. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  397. /* Delay after an RCC peripheral clock enabling */
  398. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  399. #elif defined(SOC_SERIES_STM32MP1)
  400. __HAL_RCC_DMAMUX_CLK_ENABLE();
  401. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  402. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  403. #endif
  404. UNUSED(tmpreg); /* To avoid compiler warnings */
  405. }
  406. }
  407. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  408. {
  409. /* Configure the DMA handler for Transmission process */
  410. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  411. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  412. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  413. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  414. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  415. #endif
  416. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  417. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  418. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  419. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  420. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  421. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  422. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  423. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1)
  424. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  425. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  426. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  427. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  428. #endif
  429. {
  430. rt_uint32_t tmpreg = 0x00U;
  431. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  432. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  433. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  434. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  435. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB)
  436. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  437. /* Delay after an RCC peripheral clock enabling */
  438. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  439. #elif defined(SOC_SERIES_STM32MP1)
  440. __HAL_RCC_DMAMUX_CLK_ENABLE();
  441. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  442. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  443. #endif
  444. UNUSED(tmpreg); /* To avoid compiler warnings */
  445. }
  446. }
  447. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  448. RT_ASSERT(result == RT_EOK);
  449. LOG_D("%s bus init done", spi_config[i].bus_name);
  450. }
  451. return result;
  452. }
  453. /**
  454. * Attach the spi device to SPI bus, this function must be used after initialization.
  455. */
  456. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
  457. {
  458. RT_ASSERT(bus_name != RT_NULL);
  459. RT_ASSERT(device_name != RT_NULL);
  460. rt_err_t result;
  461. struct rt_spi_device *spi_device;
  462. struct stm32_hw_spi_cs *cs_pin;
  463. /* initialize the cs pin && select the slave*/
  464. GPIO_InitTypeDef GPIO_Initure;
  465. GPIO_Initure.Pin = cs_gpio_pin;
  466. GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
  467. GPIO_Initure.Pull = GPIO_PULLUP;
  468. GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
  469. HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
  470. HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
  471. /* attach the device to spi bus*/
  472. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  473. RT_ASSERT(spi_device != RT_NULL);
  474. cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
  475. RT_ASSERT(cs_pin != RT_NULL);
  476. cs_pin->GPIOx = cs_gpiox;
  477. cs_pin->GPIO_Pin = cs_gpio_pin;
  478. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  479. if (result != RT_EOK)
  480. {
  481. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  482. }
  483. RT_ASSERT(result == RT_EOK);
  484. LOG_D("%s attach to %s done", device_name, bus_name);
  485. return result;
  486. }
  487. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  488. void SPI1_IRQHandler(void)
  489. {
  490. /* enter interrupt */
  491. rt_interrupt_enter();
  492. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  493. /* leave interrupt */
  494. rt_interrupt_leave();
  495. }
  496. #endif
  497. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  498. /**
  499. * @brief This function handles DMA Rx interrupt request.
  500. * @param None
  501. * @retval None
  502. */
  503. void SPI1_DMA_RX_IRQHandler(void)
  504. {
  505. /* enter interrupt */
  506. rt_interrupt_enter();
  507. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  508. /* leave interrupt */
  509. rt_interrupt_leave();
  510. }
  511. #endif
  512. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  513. /**
  514. * @brief This function handles DMA Tx interrupt request.
  515. * @param None
  516. * @retval None
  517. */
  518. void SPI1_DMA_TX_IRQHandler(void)
  519. {
  520. /* enter interrupt */
  521. rt_interrupt_enter();
  522. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  523. /* leave interrupt */
  524. rt_interrupt_leave();
  525. }
  526. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  527. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  528. void SPI2_IRQHandler(void)
  529. {
  530. /* enter interrupt */
  531. rt_interrupt_enter();
  532. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  533. /* leave interrupt */
  534. rt_interrupt_leave();
  535. }
  536. #endif
  537. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  538. /**
  539. * @brief This function handles DMA Rx interrupt request.
  540. * @param None
  541. * @retval None
  542. */
  543. void SPI2_DMA_RX_IRQHandler(void)
  544. {
  545. /* enter interrupt */
  546. rt_interrupt_enter();
  547. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  548. /* leave interrupt */
  549. rt_interrupt_leave();
  550. }
  551. #endif
  552. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  553. /**
  554. * @brief This function handles DMA Tx interrupt request.
  555. * @param None
  556. * @retval None
  557. */
  558. void SPI2_DMA_TX_IRQHandler(void)
  559. {
  560. /* enter interrupt */
  561. rt_interrupt_enter();
  562. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  563. /* leave interrupt */
  564. rt_interrupt_leave();
  565. }
  566. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  567. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  568. void SPI3_IRQHandler(void)
  569. {
  570. /* enter interrupt */
  571. rt_interrupt_enter();
  572. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  573. /* leave interrupt */
  574. rt_interrupt_leave();
  575. }
  576. #endif
  577. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  578. /**
  579. * @brief This function handles DMA Rx interrupt request.
  580. * @param None
  581. * @retval None
  582. */
  583. void SPI3_DMA_RX_IRQHandler(void)
  584. {
  585. /* enter interrupt */
  586. rt_interrupt_enter();
  587. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  588. /* leave interrupt */
  589. rt_interrupt_leave();
  590. }
  591. #endif
  592. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  593. /**
  594. * @brief This function handles DMA Tx interrupt request.
  595. * @param None
  596. * @retval None
  597. */
  598. void SPI3_DMA_TX_IRQHandler(void)
  599. {
  600. /* enter interrupt */
  601. rt_interrupt_enter();
  602. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  603. /* leave interrupt */
  604. rt_interrupt_leave();
  605. }
  606. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  607. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  608. void SPI4_IRQHandler(void)
  609. {
  610. /* enter interrupt */
  611. rt_interrupt_enter();
  612. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  613. /* leave interrupt */
  614. rt_interrupt_leave();
  615. }
  616. #endif
  617. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  618. /**
  619. * @brief This function handles DMA Rx interrupt request.
  620. * @param None
  621. * @retval None
  622. */
  623. void SPI4_DMA_RX_IRQHandler(void)
  624. {
  625. /* enter interrupt */
  626. rt_interrupt_enter();
  627. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  628. /* leave interrupt */
  629. rt_interrupt_leave();
  630. }
  631. #endif
  632. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  633. /**
  634. * @brief This function handles DMA Tx interrupt request.
  635. * @param None
  636. * @retval None
  637. */
  638. void SPI4_DMA_TX_IRQHandler(void)
  639. {
  640. /* enter interrupt */
  641. rt_interrupt_enter();
  642. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  643. /* leave interrupt */
  644. rt_interrupt_leave();
  645. }
  646. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  647. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  648. void SPI5_IRQHandler(void)
  649. {
  650. /* enter interrupt */
  651. rt_interrupt_enter();
  652. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  653. /* leave interrupt */
  654. rt_interrupt_leave();
  655. }
  656. #endif
  657. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  658. /**
  659. * @brief This function handles DMA Rx interrupt request.
  660. * @param None
  661. * @retval None
  662. */
  663. void SPI5_DMA_RX_IRQHandler(void)
  664. {
  665. /* enter interrupt */
  666. rt_interrupt_enter();
  667. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  668. /* leave interrupt */
  669. rt_interrupt_leave();
  670. }
  671. #endif
  672. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  673. /**
  674. * @brief This function handles DMA Tx interrupt request.
  675. * @param None
  676. * @retval None
  677. */
  678. void SPI5_DMA_TX_IRQHandler(void)
  679. {
  680. /* enter interrupt */
  681. rt_interrupt_enter();
  682. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  683. /* leave interrupt */
  684. rt_interrupt_leave();
  685. }
  686. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  687. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  688. /**
  689. * @brief This function handles DMA Rx interrupt request.
  690. * @param None
  691. * @retval None
  692. */
  693. void SPI6_DMA_RX_IRQHandler(void)
  694. {
  695. /* enter interrupt */
  696. rt_interrupt_enter();
  697. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  698. /* leave interrupt */
  699. rt_interrupt_leave();
  700. }
  701. #endif
  702. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  703. /**
  704. * @brief This function handles DMA Tx interrupt request.
  705. * @param None
  706. * @retval None
  707. */
  708. void SPI6_DMA_TX_IRQHandler(void)
  709. {
  710. /* enter interrupt */
  711. rt_interrupt_enter();
  712. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  713. /* leave interrupt */
  714. rt_interrupt_leave();
  715. }
  716. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  717. static void stm32_get_dma_info(void)
  718. {
  719. #ifdef BSP_SPI1_RX_USING_DMA
  720. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  721. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  722. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  723. #endif
  724. #ifdef BSP_SPI1_TX_USING_DMA
  725. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  726. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  727. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  728. #endif
  729. #ifdef BSP_SPI2_RX_USING_DMA
  730. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  731. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  732. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  733. #endif
  734. #ifdef BSP_SPI2_TX_USING_DMA
  735. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  736. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  737. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  738. #endif
  739. #ifdef BSP_SPI3_RX_USING_DMA
  740. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  741. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  742. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  743. #endif
  744. #ifdef BSP_SPI3_TX_USING_DMA
  745. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  746. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  747. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  748. #endif
  749. #ifdef BSP_SPI4_RX_USING_DMA
  750. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  751. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  752. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  753. #endif
  754. #ifdef BSP_SPI4_TX_USING_DMA
  755. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  756. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  757. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  758. #endif
  759. #ifdef BSP_SPI5_RX_USING_DMA
  760. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  761. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  762. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  763. #endif
  764. #ifdef BSP_SPI5_TX_USING_DMA
  765. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  766. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  767. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  768. #endif
  769. #ifdef BSP_SPI6_RX_USING_DMA
  770. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  771. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  772. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  773. #endif
  774. #ifdef BSP_SPI6_TX_USING_DMA
  775. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  776. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  777. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  778. #endif
  779. }
  780. #if defined(SOC_SERIES_STM32F0)
  781. void SPI1_DMA_RX_TX_IRQHandler(void)
  782. {
  783. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  784. SPI1_DMA_TX_IRQHandler();
  785. #endif
  786. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  787. SPI1_DMA_RX_IRQHandler();
  788. #endif
  789. }
  790. void SPI2_DMA_RX_TX_IRQHandler(void)
  791. {
  792. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  793. SPI2_DMA_TX_IRQHandler();
  794. #endif
  795. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  796. SPI2_DMA_RX_IRQHandler();
  797. #endif
  798. }
  799. #endif /* SOC_SERIES_STM32F0 */
  800. int rt_hw_spi_init(void)
  801. {
  802. stm32_get_dma_info();
  803. return rt_hw_spi_bus_init();
  804. }
  805. INIT_BOARD_EXPORT(rt_hw_spi_init);
  806. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  807. #endif /* RT_USING_SPI */