dm9000.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. #include <rtthread.h>
  2. #include "dm9000.h"
  3. #include <netif/ethernetif.h>
  4. #include "lwipopts.h"
  5. #include <stm32f10x_lib.h>
  6. /*
  7. * DM9000 interrupt line is connected to PF7
  8. */
  9. //--------------------------------------------------------
  10. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  11. #define RST_1() GPIO_SetBits(GPIOF,GPIO_Pin_6)
  12. #define RST_0() GPIO_ResetBits(GPIOF,GPIO_Pin_6)
  13. #define MAX_ADDR_LEN 6
  14. enum DM9000_PHY_mode
  15. {
  16. DM9000_10MHD = 0, DM9000_100MHD = 1,
  17. DM9000_10MFD = 4, DM9000_100MFD = 5,
  18. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  19. };
  20. enum DM9000_TYPE
  21. {
  22. TYPE_DM9000E,
  23. TYPE_DM9000A,
  24. TYPE_DM9000B
  25. };
  26. struct rt_dm9000_eth
  27. {
  28. /* inherit from ethernet device */
  29. struct eth_device parent;
  30. enum DM9000_TYPE type;
  31. rt_uint8_t imr_all;
  32. /* interface address info. */
  33. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  34. };
  35. static struct rt_dm9000_eth dm9000_device;
  36. static struct rt_semaphore sem_ack, sem_lock;
  37. void rt_dm9000_isr(void);
  38. static void delay_ms(rt_uint32_t ms)
  39. {
  40. rt_uint32_t len;
  41. for (;ms > 0; ms --)
  42. for (len = 0; len < 100; len++ );
  43. }
  44. /* Read a byte from I/O port */
  45. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  46. {
  47. DM9000_IO = reg;
  48. return (rt_uint8_t) DM9000_DATA;
  49. }
  50. /* Write a byte to I/O port */
  51. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  52. {
  53. DM9000_IO = reg;
  54. DM9000_DATA = value;
  55. }
  56. /* Read a word from phyxcer */
  57. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  58. {
  59. rt_uint16_t val;
  60. /* Fill the phyxcer register into REG_0C */
  61. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  62. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  63. delay_ms(100); /* Wait read complete */
  64. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  65. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  66. return val;
  67. }
  68. /* Write a word to phyxcer */
  69. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  70. {
  71. /* Fill the phyxcer register into REG_0C */
  72. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  73. /* Fill the written data into REG_0D & REG_0E */
  74. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  75. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  76. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  77. delay_ms(500); /* Wait write complete */
  78. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  79. }
  80. /* Set PHY operationg mode */
  81. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  82. {
  83. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  84. if (!(media_mode & DM9000_AUTO))
  85. {
  86. switch (media_mode)
  87. {
  88. case DM9000_10MHD:
  89. phy_reg4 = 0x21;
  90. phy_reg0 = 0x0000;
  91. break;
  92. case DM9000_10MFD:
  93. phy_reg4 = 0x41;
  94. phy_reg0 = 0x1100;
  95. break;
  96. case DM9000_100MHD:
  97. phy_reg4 = 0x81;
  98. phy_reg0 = 0x2000;
  99. break;
  100. case DM9000_100MFD:
  101. phy_reg4 = 0x101;
  102. phy_reg0 = 0x3100;
  103. break;
  104. }
  105. phy_write(4, phy_reg4); /* Set PHY media mode */
  106. phy_write(0, phy_reg0); /* Tmp */
  107. }
  108. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  109. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  110. }
  111. /* interrupt service routine */
  112. void rt_dm9000_isr()
  113. {
  114. rt_uint32_t int_status;
  115. rt_uint32_t last_io;
  116. last_io = DM9000_IO;
  117. /* Disable all interrupts */
  118. dm9000_io_write(DM9000_IMR, IMR_PAR);
  119. /* Got DM9000 interrupt status */
  120. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  121. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  122. /* receive overflow */
  123. if (int_status & ISR_ROS)
  124. {
  125. rt_kprintf("overflow\n");
  126. }
  127. if (int_status & ISR_ROOS)
  128. {
  129. rt_kprintf("overflow counter overflow\n");
  130. }
  131. /* Received the coming packet */
  132. if (int_status & ISR_PRS)
  133. {
  134. rt_err_t result;
  135. /* a frame has been received */
  136. result = eth_device_ready(&(dm9000_device.parent));
  137. if (result != RT_EOK) rt_kprintf("eth notification failed\n");
  138. RT_ASSERT(result == RT_EOK);
  139. }
  140. /* Transmit Interrupt check */
  141. if (int_status & ISR_PTS)
  142. {
  143. /* transmit done */
  144. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  145. if (tx_status & (NSR_TX2END | NSR_TX1END))
  146. {
  147. /* One packet sent complete */
  148. rt_sem_release(&sem_ack);
  149. }
  150. }
  151. /* Re-enable interrupt mask */
  152. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  153. DM9000_IO = last_io;
  154. }
  155. /* RT-Thread Device Interface */
  156. /* initialize the interface */
  157. static rt_err_t rt_dm9000_init(rt_device_t dev)
  158. {
  159. int i, oft, lnk;
  160. rt_uint32_t value;
  161. /* RESET device */
  162. dm9000_io_write(DM9000_NCR, NCR_RST);
  163. delay_ms(100); /* delay 1ms */
  164. /* identfy DM9000 */
  165. value = dm9000_io_read(DM9000_VIDL);
  166. value |= dm9000_io_read(DM9000_VIDH) << 8;
  167. value |= dm9000_io_read(DM9000_PIDL) << 16;
  168. value |= dm9000_io_read(DM9000_PIDH) << 24;
  169. if (value == DM9000_ID)
  170. {
  171. rt_kprintf("dm9000 id: 0x%x\n", value);
  172. }
  173. else
  174. {
  175. return -RT_ERROR;
  176. }
  177. /* GPIO0 on pre-activate PHY */
  178. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  179. // dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  180. // dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  181. /* Set PHY */
  182. phy_mode_set(DM9000_AUTO);
  183. /* Program operating register */
  184. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  185. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  186. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  187. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  188. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  189. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  190. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  191. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  192. dm9000_io_write(DM9000_TCR2, 0x90); /* Switch LED to mode 1 and one packet mode */
  193. /* set mac address */
  194. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  195. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  196. /* set multicast address */
  197. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  198. dm9000_io_write(oft, 0xff);
  199. /* Activate DM9000 */
  200. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  201. dm9000_io_write(DM9000_IMR, IMR_PAR);
  202. i = 0;
  203. while (!(phy_read(1) & 0x20))
  204. {
  205. /* autonegation complete bit */
  206. delay_ms(100);
  207. i++;
  208. if (i == 100000)
  209. {
  210. rt_kprintf("could not establish link\n");
  211. return 0;
  212. }
  213. }
  214. /* see what we've got */
  215. lnk = phy_read(17) >> 12;
  216. rt_kprintf("operating at ");
  217. switch (lnk) {
  218. case 1:
  219. rt_kprintf("10M half duplex ");
  220. break;
  221. case 2:
  222. rt_kprintf("10M full duplex ");
  223. break;
  224. case 4:
  225. rt_kprintf("100M half duplex ");
  226. break;
  227. case 8:
  228. rt_kprintf("100M full duplex ");
  229. break;
  230. default:
  231. rt_kprintf("unknown: %d ", lnk);
  232. break;
  233. }
  234. rt_kprintf("mode\n");
  235. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  236. return RT_EOK;
  237. }
  238. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  239. {
  240. return RT_EOK;
  241. }
  242. static rt_err_t rt_dm9000_close(rt_device_t dev)
  243. {
  244. /* RESET devie */
  245. phy_write(0, 0x8000); /* PHY RESET */
  246. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  247. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  248. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  249. return RT_EOK;
  250. }
  251. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  252. {
  253. rt_set_errno(-RT_ENOSYS);
  254. return 0;
  255. }
  256. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  257. {
  258. rt_set_errno(-RT_ENOSYS);
  259. return 0;
  260. }
  261. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  262. {
  263. switch(cmd)
  264. {
  265. case NIOCTL_GADDR:
  266. /* get mac address */
  267. if(args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  268. else return -RT_ERROR;
  269. break;
  270. default :
  271. break;
  272. }
  273. return RT_EOK;
  274. }
  275. /* ethernet device interface */
  276. /* transmit packet. */
  277. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  278. {
  279. struct pbuf* q;
  280. rt_int32_t len;
  281. rt_uint16_t* ptr;
  282. /* lock DM9000 device */
  283. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  284. /* Move data to DM9000 TX RAM */
  285. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  286. for (q = p; q != NULL; q = q->next)
  287. {
  288. len = q->len;
  289. ptr = q->payload;
  290. /* use 16bit mode to write data to DM9000 RAM */
  291. while (len > 0)
  292. {
  293. DM9000_outw(DM9000_DATA_BASE, *ptr);
  294. ptr ++; len -= 2;
  295. }
  296. }
  297. /* Set TX length to DM9000 */
  298. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  299. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  300. /* Issue TX polling command */
  301. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  302. /* unlock DM9000 device */
  303. rt_sem_release(&sem_lock);
  304. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  305. return RT_EOK;
  306. }
  307. /* reception packet. */
  308. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  309. {
  310. struct pbuf* p;
  311. rt_uint32_t rxbyte;
  312. /* init p pointer */
  313. p = RT_NULL;
  314. /* lock DM9000 device */
  315. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  316. /* Check packet ready or not */
  317. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  318. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  319. if (rxbyte)
  320. {
  321. rt_uint16_t rx_status, rx_len;
  322. rt_uint16_t* data;
  323. if (rxbyte > 1)
  324. {
  325. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  326. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  327. }
  328. /* A packet ready now & Get status/length */
  329. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  330. rx_status = DM9000_inw(DM9000_DATA_BASE);
  331. rx_len = DM9000_inw(DM9000_DATA_BASE);
  332. /* allocate buffer */
  333. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  334. if (p != RT_NULL)
  335. {
  336. struct pbuf* q;
  337. rt_int32_t len;
  338. for (q = p; q != RT_NULL; q= q->next)
  339. {
  340. data = (rt_uint16_t*)q->payload;
  341. len = q->len;
  342. while (len > 0)
  343. {
  344. *data = DM9000_inw(DM9000_DATA_BASE);
  345. data ++; len -= 2;
  346. }
  347. }
  348. }
  349. else
  350. {
  351. rt_uint16_t dummy;
  352. /* no pbuf, discard data from DM9000 */
  353. data = &dummy;
  354. while (rx_len)
  355. {
  356. *data = DM9000_inw(DM9000_DATA_BASE);
  357. rx_len -= 2;
  358. }
  359. }
  360. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  361. || (rx_len > DM9000_PKT_MAX))
  362. {
  363. if (rx_status & 0x100)
  364. {
  365. rt_kprintf("rx fifo error\n");
  366. }
  367. if (rx_status & 0x200) {
  368. rt_kprintf("rx crc error\n");
  369. }
  370. if (rx_status & 0x8000)
  371. {
  372. rt_kprintf("rx length error\n");
  373. }
  374. if (rx_len > DM9000_PKT_MAX)
  375. {
  376. rt_kprintf("rx length too big\n");
  377. /* RESET device */
  378. dm9000_io_write(DM9000_NCR, NCR_RST);
  379. rt_thread_delay(1); /* delay 5ms */
  380. }
  381. /* it issues an error, release pbuf */
  382. pbuf_free(p);
  383. p = RT_NULL;
  384. }
  385. }
  386. else
  387. {
  388. /* restore interrupt */
  389. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  390. }
  391. /* unlock DM9000 device */
  392. rt_sem_release(&sem_lock);
  393. return p;
  394. }
  395. static void RCC_Configuration(void)
  396. {
  397. /* enable gpiob port clock */
  398. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_AFIO, ENABLE);
  399. }
  400. static void NVIC_Configuration(void)
  401. {
  402. NVIC_InitTypeDef NVIC_InitStructure;
  403. /* Configure one bit for preemption priority */
  404. NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
  405. /* Enable the EXTI0 Interrupt */
  406. NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQChannel;
  407. NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  408. NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  409. NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  410. NVIC_Init(&NVIC_InitStructure);
  411. }
  412. static void GPIO_Configuration()
  413. {
  414. GPIO_InitTypeDef GPIO_InitStructure;
  415. EXTI_InitTypeDef EXTI_InitStructure;
  416. /* configure PF6 as eth RST */
  417. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
  418. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  419. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  420. GPIO_Init(GPIOF,&GPIO_InitStructure);
  421. GPIO_ResetBits(GPIOF,GPIO_Pin_6);
  422. RST_1();
  423. /* configure PF7 as external interrupt */
  424. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
  425. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  426. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
  427. GPIO_Init(GPIOF, &GPIO_InitStructure);
  428. /* Connect DM9000 EXTI Line to GPIOF Pin 7 */
  429. GPIO_EXTILineConfig(GPIO_PortSourceGPIOF, GPIO_PinSource7);
  430. /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
  431. EXTI_InitStructure.EXTI_Line = EXTI_Line7;
  432. EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  433. EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
  434. EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  435. EXTI_Init(&EXTI_InitStructure);
  436. /* Clear the Key Button EXTI line pending bit */
  437. EXTI_ClearITPendingBit(EXTI_Line7);
  438. }
  439. void rt_hw_dm9000_init()
  440. {
  441. RCC_Configuration();
  442. NVIC_Configuration();
  443. GPIO_Configuration();
  444. rt_sem_init(&sem_ack, "tx_ack", 0, RT_IPC_FLAG_FIFO);
  445. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  446. dm9000_device.type = TYPE_DM9000A;
  447. /*
  448. * SRAM Tx/Rx pointer automatically return to start address,
  449. * Packet Transmitted, Packet Received
  450. */
  451. dm9000_device.imr_all = IMR_PAR | IMR_ROOM | IMR_ROM | IMR_PTM | IMR_PRM;
  452. dm9000_device.dev_addr[0] = 0x01;
  453. dm9000_device.dev_addr[1] = 0x60;
  454. dm9000_device.dev_addr[2] = 0x6E;
  455. dm9000_device.dev_addr[3] = 0x11;
  456. dm9000_device.dev_addr[4] = 0x02;
  457. dm9000_device.dev_addr[5] = 0x0F;
  458. dm9000_device.parent.parent.init = rt_dm9000_init;
  459. dm9000_device.parent.parent.open = rt_dm9000_open;
  460. dm9000_device.parent.parent.close = rt_dm9000_close;
  461. dm9000_device.parent.parent.read = rt_dm9000_read;
  462. dm9000_device.parent.parent.write = rt_dm9000_write;
  463. dm9000_device.parent.parent.control = rt_dm9000_control;
  464. dm9000_device.parent.parent.private = RT_NULL;
  465. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  466. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  467. eth_device_init(&(dm9000_device.parent), "e0");
  468. }
  469. #ifdef RT_USING_FINSH
  470. #include <finsh.h>
  471. void dm9000(void)
  472. {
  473. rt_kprintf("\n");
  474. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  475. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  476. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  477. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  478. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  479. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  480. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  481. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  482. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  483. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  484. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  485. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  486. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  487. rt_kprintf("\n");
  488. }
  489. FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
  490. void rx(void)
  491. {
  492. rt_err_t result;
  493. dm9000_io_write(DM9000_ISR, ISR_PRS); /* Clear rx status */
  494. /* a frame has been received */
  495. result = eth_device_ready(&(dm9000_device.parent));
  496. if (result != RT_EOK) rt_kprintf("eth notification failed\n");
  497. RT_ASSERT(result == RT_EOK);
  498. }
  499. FINSH_FUNCTION_EXPORT(rx, notify packet rx);
  500. #endif